Answer:
John Dalton, an English chemist and meteorologist, is credited with the first modern atomic theory based on his experiments with atmospheric gases.
To determine the mass of CO₂, the following must be known :
- the molar mass of CaCO₃
- the mole ratio of CaCO₃ to CO₂
- the molar mass of CO₂
<h3>Further explanation</h3>
Reaction
Decomposition of CaCO₃
CaCO₃ ⇒ CaO + CO₂
Given the mass of CaCO₃, so to determine the mass of CO₂ :
1. Find the mol of CaCO₃ from the molar mass of CaCO₃

2. Find the mole ratio of CaCO₃ : CO₂(from equation = 1 : 1)

3. Find the mass of CO₂ from the molar mass of CO₂

Answer:
=<em><u> 0.42 moles of CO2 </u></em>
Explanation:
From Avogadro's constant
6.02×10^23 molecules are in 1 mole of CO2
2.54×10^23 molecules will be in
=[(2.54×10^23) ÷ (6.02×10^23)]
= 0.42 moles of CO2
Hey there!
* Converts 1750 dm³ in liters :
1 dm³ = 1 L so 1750 dm³ = 1750 liters
* Convertes 125,000 Pa in atm :
1 Pa = 9.86*10⁻⁶ atm so 9.86*10⁻⁶ / 125,000 => 1.233 atm
* Convertes 127ºC in K :
127 + 273.15 => 400.15 K
R = 0.082 atm.L/mol.K
Finally, it uses an equation of clapeyron :
p * V = n * R * T
1.233 * 1750 = n * 0.082 * 400.15
2157.75 = n * 32.8123
n = 2157.75 / 32.8123
n = 65.76 moles
hope this helps!