This is the reaction formula,
4Fe+3O2=2Fe2O3
<span>3Fe+202=Fe3O4
it has o</span>xygen atom after it's rusted
Do you mean 4+7 if yes it’s 11
Answer:
The atomic mass of an element is the average mass of the atoms of an element measured in atomic mass unit (amu, also known as daltons, D). The atomic mass is a weighted average of all of the isotopes of that element, in which the mass of each isotope is multiplied by the abundance of that particular isotope. (Atomic mass is also referred to as atomic weight, but the term "mass" is more accurate.)
Answer:
ΔH3 = 1/2 (629) - ΔH^0
Explanation:
Given data:
Bond energy of H2 = ΔH1 = 436 Kj/mol
Bond energy of Br2 = ΔH2 = 193 Kj/mol
To find:
Let bond energy of HBr = ΔH3 = ?
Equation:
H2 + Br2 → 2HBr
enthalpy of formation of HBr = ΔH1 + ΔH3 - 2(ΔH3)
ΔH^0 = 436 + 193 - 2(ΔH3)
(436 + 193) - ΔH^0 = 2(ΔH3)
ΔH3 = 1/2 (629) - ΔH^0
They all have something to do with heat