Answer:
It is the last one.
Explanation:
Water molecules are polar, they have cohesive properties, and water is less dense when it is solid than when it is a liquid, that is why ice floats in liquid water. However, water is a very good solvent, it can dissolve many solids, including sugar, salt, and other hydrophilic substances.
The concentration of cell is less than that of the solution .
Hence the cell will be called as hypotonic and the solution will be called as hypertonic.
in order to balance the concentration on the two sides of cell (inside and outside in the solution) there will be movement of solvent particles (through semipermeable membrane ) from cell (lower concentration of solute) to solution (higher concentration of solute).
Thus cell will shrink.
- The mass percent of
Pentane in solution is 16.49%
- The mass percent of
Hexane in solution is 83.51%
<u>Explanation</u>:
- Take 1 kg basis for the vapor: 35.5 mass% pentane = 355 g pentane with 645 g hexane.
-
Convert these values to mol% using their molecular weights:
Pentane: Mp = 72.15 g/mol -> 355g/72.15 g/mol = 4.92mol
Hexane: Mh = 86.18 g/mol -> 645g/86.18 g/mol = 7.48mol
Pentane mol%: yp = 4.92/(4.92+7.48) = 39.68%
Hexane mol%: yh = 100 - 39.68 = 60.32%
Pp-vap = 425 torr = 0.555atm
Ph-vap = 151 torr = 0.199atm
-
From Raoult's law we know:
Pp = xp
Pp - vap = yp
Pt (1)
Ph = xh
Ph - vap = yh
Pt (2)
-
Since it is a binary mixture we can write xh = (1 - xp) and yh = (1 - yp), therefore (2) becomes:
(1 - xp)
Ph - vap = (1 - yp)
Pt (3)
-
Substituting (1) into (3) we get:
(1-xp)
Ph - vap = (1 - yp)
xp
Pp - vap / yp (4)
xp = Ph - vap / (Pp - vap/yp - Pp - vap + Ph - vap) (5)
-
Subbing in the values we find:
Pentane mol% in solution: xp = 19.08%
Hexane mol% in solution: xh = 80.92%
-
Now for converting these mol% to mass%, take 1 mol basis for the solution and multiplying it by molar mass:
mp = 0.1908 mol
72.15 g/mol
= 13.766 g
mh = 0.8092 mol
86.18 g/mol
= 69.737 g
-
Mass% of Pentane solution = 13.766/(13.766+69.737)
= 16.49%
-
Mass% of Hexane solution = 83.51%
Answer:
6l
Explanation: convert temperature to kelvin by adding 273 and then input the values into the formula with the given constant
2*v=0.5*0.8206*288 then divide both sides by 2 and get the amount in litres which is 6
Given parameters:
Initial volume = 120ml
Initial temperature = 35°C
Initial pressure = 1.2bar
Final volume = 180ml
Final temperature = 35°C
Unknown:
Final pressure = ?
To solve this problem, we apply the combined gas law. The expression is given below;

Where P₁ is the initial pressure
P₂ is the final pressure
V₁ is the initial volume
V₂ is the final volume
T₁ is the initial temperature
T₂ is the final temperature
We need to convert the parameters to standard units
take the volume to dm³;
1000ml = 1dm³
120ml =
dm³ = 0.12dm³ = initial volume
Final volume;
1000ml = 1dm³
180ml =
dm³ = 0.18dm³
Now, the temperature;
K = 273 + °C
Initial temperature = 273 + 35 = 308k
Final temperature = 308k
We then input the parameters into the equation;
Solving for P₂;
P₂ = 0.8bar
The new pressure or final pressure in the vessel is 0.8bar