Answer: Hydrogen bonds
Explanation: Hydrogen bonds allow two molecules to link together temporarily. Water molecules are made up of two hydrogen atoms and one oxygen atom, held together by polar covalent bonds.
Answer:
0.4 M
Explanation:
Equilibrium occurs when the velocity of the formation of the products is equal to the velocity of the formation of the reactants. It can be described by the equilibrium constant, which is the multiplication of the concentration of the products elevated by their coefficients divided by the multiplication of the concentration of the reactants elevated by their coefficients. So, let's do an equilibrium chart for the reaction.
Because there's no O₂ in the beginning, the NO will decompose:
N₂(g) + O₂(g) ⇄ 2NO(g)
0.30 0 0.70 Initial
+x +x -2x Reacts (the stoichiometry is 1:1:2)
0.30+x x 0.70-2x Equilibrium
The equilibrium concentrations are the number of moles divided by the volume (0.250 L):
[N₂] = (0.30 + x)/0.250
[O₂] = x/0.25
[NO] = (0.70 - 2x)/0.250
K = [NO]²/([N₂]*[O₂])
K = 
7.70 = (0.70-2x)²/[(0.30+x)*x]
7.70 = (0.49 - 2.80x + 4x²)/(0.30x + x²)
4x² - 2.80x + 0.49 = 2.31x + 7.70x²
3.7x² + 5.11x - 0.49 = 0
Solving in a graphical calculator (or by Bhaskara's equation), x>0 and x<0.70
x = 0.09 mol
Thus,
[O₂] = 0.09/0.250 = 0.36 M ≅ 0.4 M
The answer should be D all of the above
Answer: 4.5 x 10e-7
Explanation: 450 x 1e+9 = correct answer
Multiply amount of nanometers by 1e+9 to get the approximate result in meters.