Answer:
B) Δ[C]/Δt = 3,60x10⁻² M⁻¹s⁻¹ [A] [B]
Explanation:
For the reaction A + B → C
The formula for rate of reaction is:
Δ[C]/Δt = k [A] [B]
As you have [A], [B] and Δ[C]/Δt information you can multiply [A] times [B] and take this value as X and Δ[C]/Δt as Y. The slope of this lineal regression will be k.
Thus, you must obtain:
y = 3,60x10⁻² X
Thus, rate of reaction is:
B) Δ[C]/Δt = 3,60x10⁻² M⁻¹s⁻¹ [A] [B]
I hope it helps!
Answer:
Hello!!! Princess Sakura here ^^
Explanation:
The precipitate forms when one of the compounds is insoluble. In double replacement reactions, the positive ions and the negative ions are dissolved reactants that switch places to form the precipitation reaction.
Answer:
Part A
Kp = 3.4 x 10⁴
Part B
Kp = 2.4 x 10⁻¹⁴
Part C
Kp = 1.2 x 10⁹
Explanation:
2PH₃(g) + As₂(g) ⇌ 2 AsH₃(g) + P₂(g) Kp = 2.9 x 10⁻⁵
Kp = [AsH₃]²[P₂]/[PH₃]²[As] = 2.9 x 10⁻⁵
Part A
it is the inverse of the equilibrium given
Kp(A) = 1/ Kp = 1 / 2.9 x 10⁻⁵ = 3.4 x 10⁴
Part B
Is the equilibrium where the coefficients have been multiplied by 3,
Kp(B) = ( Kp )³ = ( 2.9 x 10⁻⁵ )³ = 2.4 x 10⁻¹⁴
Part C
This is the reverse equilibrium multipled by 2.
Kp(C) = ( 1/Kp)² = ( 1/ 2.9 x 10⁻⁵ )² = 1.2 x 10⁹
i think it is 8. I might be wrong.
Light does not travel at a constant speed in a vacuum, compared to in air, because the light is being absorbed by atoms and molecules in the air. But light does travel at a constant speed in a vacuum.
So I agree with A
All that talk about moving forward is irrelevant (I think)