Answer:
See explanation
Explanation:
The question is incomplete because the image of the alcohol is missing. However, I will try give you a general picture of the reaction known as hydroboration of alkenes.
This reaction occurs in two steps. In the first step, -BH2 and H add to the same face of the double bond (syn addition).
In the second step, alkaline hydrogen peroxide is added and the alcohol is formed.
Note that the BH2 and H adds to the two atoms of the double bond. The final product of the reaction appears as if water was added to the original alkene following an anti-Markovnikov mechanism.
Steric hindrance is known to play a major role in this reaction as good yield of the anti-Markovnikov like product is obtained with alkenes having one of the carbon atoms of the double bond significantly hindered.
Substance P replaces X in the compound XY
this is the characteristic of decomposition reaction
Answer:
Would you consider adding a sodium carbonate solution to a magnesium sulfate .
Explanation:
??
B) ionic bond
(although in reality, every bond is fundamentally the sharing of a pair of electron. but due to unmutal electonegativity, the molecule becomes polar)
Answer:
P4(s) + 5 O2 (g)→ P4O10
Explanation:
If we desire to write a balanced chemical reaction equation, the rule of thumb is simple; the number of atoms of each element on the right hand side of the reaction equation must be the same as the number of atoms of the same element on the left hand side of the reaction equation. Once this condition is satisfied, the reaction equation is said to be balanced.
As we can see, we need one mole of P4 and five moles of O2 to produce one mole of P4O10.