Answer:
The total number of significant figures is twelve.
Explanation:
Answer:
The speed of the sled is 3.56 m/s
Explanation:
Given that,
Mass = 2.12 kg
Initial speed = 5.49 m/s
Coefficient of kinetic friction = 0.229
Distance = 3.89 m
We need to calculate the acceleration of sled
Using formula of acceleration

Where, F = frictional force
m = mass
Put the value into the formula




We need to calculate the speed of the sled
Using equation of motion

Where, v = final velocity
u = initial velocity
a = acceleration
s = distance
Put the value in the equation



Hence, The speed of the sled is 3.56 m/s.
Answer:
1.73 m/s²
Explanation:
Given:
Δx = 250 m
v₀ = 0 m/s
t = 17 s
Find: a
Δx = v₀ t + ½ at²
250 m = (0 m/s) (17 s) + ½ a (17 s)²
a = 1.73 m/s²
higher temp = higher energy = higher frequency = shorter wavelength
Answer:
The horizontally applied force = 2360 N
Explanation:
<em>Force:</em> Force can be defined as the product of mass and acceleration. the S.I unit of force is Newton (N)
Fh = Fr + ma......... Equation 1
Where Fh = horizontally applied force, Fr = friction force, m = mass of the crate, a = acceleration of the crate.
<em>Given: m = 400 kg, a = 1 m/s²</em>
Fr = 1/2 W, W = mg ⇒W = 400×9.8 = 3920 N
∴Fr = 1/2(3920), Fr = 1960 N
Substituting these values into equation 1
Fh = 1960 + 400×1
Fh = 1960 + 400
Fh = 2360 N
Therefore the horizontally applied force = 2360 N