Answer:
a) vertically up
Explanation:
A car travels forward with constant velocity. It goes over a small stone, which gets stuck in the groove of a tire. The initial acceleration of the stone, as it leaves the surface of the road is,
a) vertically up
b) horizontally forward
c) horizontally backwards
d) zero
e) greater than zero but less than 45 degrees below the horizontal
A vertically upward since that is the direction of centripetal acceleration at that time. as the stone enters the circular path of the tire, it does so with a centripetal acceleration which is directed upward
Answer:
a
e(k) = \frac{2a}{c} * sin (\frac{k*a}{2} )
b
G_{v} = \frac{d e(k ) }{dk } = \frac{a^2}{c} * cos (\frac{k* a}{2} )
Explanation:
From the question we are told that
The velocity of transverse waves in a crystal of atomic separation is

Generally the dispersion relation is mathematically represented as

=> 
=> 
=> 
Generally the group velocity is mathematically represented as

Answer: 3. F1 = F2
Explanation:
According to <u>Newton's law of Gravitation</u>, the force
exerted <u>between two bodies</u> or objects of masses
and
and separated by a distance
is equal to the product of their masses divided by the square of the distance:
(1)
Where
is the gravitational constant
Now, in the especific case of the Earth and the satellite, where the Earth has a mass
and satellite a mass
, being both separated a distance
, the force exerted by the Earth on the satellite is:
(2)
And the force exerted by the satellite on the Earth is:
(3)
As we can see equations (2) and (3) are equal, hence the magnitude of the gravitational force is the same for both:

Answer:
The minimum frequency of the coil is 7.1 Hz
Explanation:
Given;
number of turns, N = 200 turns
cross sectional area, A = 300 cm² = 300 x 10⁻⁴ m²
magnitude of magnetic field strength, B = 30 x 10⁻³ T
maximum value of the induced emf, E = 8 V
Maximum induced emf is given as;
E = NBAω
where
ω is angular velocity (ω = 2πf)
E = NBA2πf
where;
f is the minimum frequency, measured in hertz (Hz)
f = E / (NBA2π)
f = 8 / (200 x 30 x 10⁻³ x 300 x 10⁻⁴ x 2 x 3.142)
f = 7.073 Hz
f = 7.1 Hz
Therefore, the minimum frequency of the coil is 7.1 Hz