Answer:
The neutron loses all of its kinetic energy to nucleus.
Explanation:
Given:
Mass of neutron is 'm' and mass of nucleus is 'm'.
The type of collision is elastic collision.
In elastic collision, there is no loss in kinetic energy of the system. So, total kinetic energy is conserved. Also, the total momentum of the system is conserved.
Here, the nucleus is still. So, its initial kinetic energy is 0. So, the total initial kinetic energy will be equal to kinetic energy of the neutron only.
Now, final kinetic energy of the system will be equal to the initial kinetic energy.
Now, as the nucleus was at rest initially, so the final kinetic energy of the nucleus will be equal to the initial kinetic energy of the neutron.
Thus, all the kinetic energy of the neutron will be transferred to the nucleus and the neutron will come to rest after collision.
Therefore, the neutron loses all of its kinetic energy to nucleus.
My answer is "Watt per square meter".
Viscosity of liquids is essentially the 'thickness' of the liquid. For instance, honey and water have different viscosities. Honey has a higher one and therefore, liquids with high viscosity do not flow as well as liquids with low viscosity (water).
Answer:
(a) 
(b) 
Explanation:
<u>Given:</u>
= The first temperature of air inside the tire = 
= The second temperature of air inside the tire = 
= The third temperature of air inside the tire = 
= The first volume of air inside the tire
= The second volume of air inside the tire = 
= The third volume of air inside the tire = 
= The first pressure of air inside the tire = 
<u>Assume:</u>
= The second pressure of air inside the tire
= The third pressure of air inside the tire- n = number of moles of air
Since the amount pof air inside the tire remains the same, this means the number of moles of air in the tire will remain constant.
Using ideal gas equation, we have

Part (a):
Using the above equation for this part of compression in the air, we have

Hence, the pressure in the tire after the compression is
.
Part (b):
Again using the equation for this part for the air, we have

Hence, the pressure in the tire after the car i driven at high speed is
.