If you could please give me a already given speed I could estimate it. since there is no speed shown you wouldn't be able to estimate the speed of the moving train.
According to the Jefferson lab, "The scientific definition of work is: using a force to move an object a distance (when both the force and the motion of the object are in the same direction.)"
is the intensity of the sound.
Answer: Option B
<u>Explanation:</u>
The range of sound intensity that people can recognize is so large (including 13 magnitude levels). The intensity of the weakest audible noise is called the hearing threshold. (intensity about
). Because it is difficult to imagine numbers in such a large range, it is advisable to use a scale from 0 to 100.
This is the goal of the decibel scale (dB). Because logarithm has the property of recording a large number and returning a small number, the dB scale is based on a logarithmic scale. The scale is defined so that the hearing threshold has intensity level of sound as 0.

Where,
I = Intensity of the sound produced
= Standard Intensity of sound of 60 decibels = 
So for 19 decibels, determine I as follows,



When log goes to other side, express in 10 to the power of that side value,


Answer: p= m/v so 90kg/.075m^3 = 1,200
2a. .35 m 1.1 m and .015 m
2b. 35 cm x 110 cm x 1.5 cm = 5,775 cm^3 = 57.75 m^3
mass= pv
2700•57.75= 155,925 kg
mass= 155,925 kg
volume= 57.75 m^3
Explanation: physics
Answer:
The distance of stars and the earth can be averagely measured by using the knowledge of geometry to estimate the stellar parallax angle(p).
From the equation below, the stars distances can be calculated.
D = 1/p
Distance = 1/(parallax angle)
Stellar parallax can be used to determine the distance of stars from an observer, on the surface of the earth due to the motion of the observer. It is the relative or apparent angular displacement of the star, due to the displacement of the observer.
Explanation:
Parallax is the observed apparent change in the position of an object resulting from a change in the position of the observer. Specifically, in the case of astronomy it refers to the apparent displacement of a nearby star as seen from an observer on Earth.
The parallax of an object can be used to approximate the distance to an object using the formula:
D = 1/p
Where p is the parallax angle observed using geometry and D is the actual distance measured in parsecs. A parsec is defined as the distance at which an object has a parallax of 1 arcsecond. This distance is approximately 3.26 light years