When we jump from the truck and accelerate towards the earth surface, the earth also accelerates towards us but it's acceleration is very negligible.
To find the answer, we need to know about the acceleration of earth due to the gravitational attraction.
<h3>What's the gravitational force between the earth and a person?</h3>
- Gravitational attraction force is GMm/r² between the earth and a person.
- M= mass of the earth
m= mass of the person
r= separation between them.
<h3>What's the acceleration of the earth towards the person when he jumps from a truck?</h3>
- According to Newton's second law, Force = M×acceleration
- Acceleration= Force / M
- Here, Force = GMm/r²,
so acceleration of earth= Gm/r²
- As this acceleration is very small, so we can't notice it.
Thus, we can conclude that the earth also accelerates towards us.
Learn more about the gravitational force here:
brainly.com/question/72250
#SPJ4
Answer:

Explanation:
Here we know that for the given system of charge we have no loss of energy as there is no friction force on it
So we will have


now we know when particle will reach the closest distance then due to electrostatic repulsion the speed will become zero.
So we have



so distance moved by the particle is given as



Trust me, i'm a k12 student and its motor
Answer:
adapted from NOVA, a team of historians, engineers, and trade experts recreate a medieval throwing machine called a trebuchet. To launch a projectile, a trebuchet utilizes the transfer of gravitational potential energy into kinetic energy. A massive counterweight at one end of a lever falls because of gravity, causing the other end of the lever to rise and release a projectile from a sling. As part of their design process, the engineers use models to help evaluate how well their designs will work.
Explanation:
Answer:
The force would be the same in both cases - option C.
Explanation:
The change in momentum is known as an impulse. In the two cases under consideration, the change in momentum is the same, thus impulse for both cases is the same.
Impulse is the average force multiplied by time interval.
I = F(average)*ΔT. Where F(average) is the average force and ΔT is the time interval.
The average force in both cases is the same since the collision time is the same.
Thus option C is the correct answer.