1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Varvara68 [4.7K]
3 years ago
13

Two cylinders each contain 0.30 mol of a diatomic gas at 320 K and a pressure of 3.0 atm. Cylinder A expands isothermally and cy

linder B expands adiabatically until the pressure of each is 1.0 atm.
Required:
a. What is the final temperature of the gas in the cylinder A?
b. What are the final temperature of the gas in the cylinder B?
c. What is the final volume of the gas in the cylinder A?
d. What is the final volume of the gas in the cylinder B?
Physics
1 answer:
Svetllana [295]3 years ago
6 0

Answer :

(a). The final temperature of the gas in the cylinder A is 320 K.

(b). The final temperature of the gas in the cylinder B is 233.7 K.

(c). The final volume of the gas in the cylinder A is 7.86\times10^{-3}\ m^3

(d). The final volume of the gas in the cylinder B is 5.7\times10^{-3}\ m^3

Explanation :

Given that,

Number of mole n = 0.30 mol

Initial temperature = 320 K

Pressure = 3.0 atm

Final pressure = 1.0 atm

We need to calculate the initial volume

Using formula of ideal gas

P_{1}V_{1}=nRT

V_{1}=\dfrac{nRT}{P_{1}}

Put the value into the formula

V_{1}=\dfrac{0.30\times8.314\times320}{3.039\times10^{5}}

V_{1}=2.62\times10^{-3}\ m^3

(a). We need to calculate the final temperature of the gas in the cylinder A

Using formula of ideal gas

In isothermally, the temperature is not change.

So, the final temperature of the gas in the cylinder A is 320 K.

(b). We need to calculate the final temperature of the gas in the cylinder B

Using formula of ideal gas

T_{2}=T_{1}\times(\dfrac{P_{1}}{P_{2}})^{\frac{1}{\gamma}-1}

Put the value into the formula

T_{2}=320\times(\dfrac{3}{1})^{\frac{1}{1.4}-1}

T_{2}=233.7\ K

(c). We need to calculate the final volume of the gas in the cylinder A

Using formula of volume of the gas

P_{1}V_{1}=P_{2}V_{2}

V_{2}=\dfrac{P_{1}V_{1}}{P_{2}}

Put the value into the formula

V_{2}=\dfrac{3\times2.62\times10^{-3}}{1}

V_{2}=0.00786\ m^3

V_{2}=7.86\times10^{-3}\ m^3

(d). We need to calculate the final volume of the gas in the cylinder B

Using formula of volume of the gas

V_{2}=V_{1}(\dfrac{P_{1}}{P_{2}})^{\frac{1}{\gamma}}

V_{2}=2.62\times10^{-3}\times(\dfrac{3}{1})^{\frac{1}{1.4}}

V_{2}=0.0057\ m^3

V_{2}=5.7\times10^{-3}\ m^3

Hence, (a). The final temperature of the gas in the cylinder A is 320 K.

(b). The final temperature of the gas in the cylinder B is 233.7 K.

(c). The final volume of the gas in the cylinder A is 7.86\times10^{-3}\ m^3

(d). The final volume of the gas in the cylinder B is 5.7\times10^{-3}\ m^3

You might be interested in
In an adiabatc process, what happens when gases in a system are compressed?
likoan [24]

Answer:work is done, and temperature increases

Explanation:

In an adiabatic process, when gases are compressed, work is done on the liquid and the temperature increases

8 0
3 years ago
Two cars are traveling along a straight line in the same direction, the lead car at 25 m/s and the other car at 35 m/s. At the m
Phoenix [80]

Answer:

a. t_1=12.5\ s

b. a_2=-13.61\ m.s^{-2}  must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping

c. t_2=2.5714\ s is the time taken to stop after braking

Explanation:

Given:

  • speed of leading car, u_1=25\ m.s^{-1}
  • speed of lagging car, u_{2}=35\ m.s^{-1}
  • distance between the cars, \Delta s=45\ m
  • deceleration of the leading car after braking, a_1=-2\ m.s^{-2}

a.

Time taken by the car to stop:

v_1=u_1+a_1.t_1

where:

v_1=0 , final velocity after braking

t_1= time taken

0=25-2\times t_1

t_1=12.5\ s

b.

using the eq. of motion for the given condition:

v_2^2=u_2^2+2.a_2.\Delta s

where:

v_2= final velocity of the chasing car after braking = 0

a_2= acceleration of the chasing car after braking

0^2=35^2+2\times a_2\times 45

a_2=-13.61\ m.s^{-2} must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping

c.

time taken by the chasing car to stop:

v_2=u_2+a_2.t_2

0=35-13.61\times t_2

t_2=2.5714\ s  is the time taken to stop after braking

7 0
3 years ago
What kind of energy does a flying bullet have?
Musya8 [376]
It mainly travels by kinetic energy
3 0
3 years ago
Read 2 more answers
1. Compared to sadness, depression:
Fiesta28 [93]
The answer should be B - lasts longer.
5 0
3 years ago
Read 2 more answers
A transverse wave on a string has an amplitude a. A tiny spot on the string is colored red. As one cycle of the wave passes by
aliya0001 [1]

Answer:

Option D) 4A

Explanation:

As the cycle of the wave passes by, the amplitude gives the longest journey when the spot travels from the undistributed position. During each cycle the spot travels "Four times" .

Considering one of this cycle, if it begins to travel from it's undistributed position , there would be four movements i.e

* Upward movement through distance A

*Downward movement through distance A

*Downward again through distance A

*Upward through distance A.

Then it would travel back to its undistributed position held

4 0
2 years ago
Other questions:
  • A man 6.00 ft tall approaches a street light 15.0 ft above the ground at the rate of 4.00 ​ft/s. How fast is the end of the​ man
    13·1 answer
  • Which equation represents a combustion reaction? Pb(NO3)2 + 2HCl → PbCl2 + 2HNO3 2SO2 + O2 → 2SO3 2C2H6 + 7O2 → 4CO2 + 6H2O Ca +
    10·2 answers
  • Who proposed the idea that gravity could actually bend light?
    8·1 answer
  • When net forces are not equal on an object, the object moves in the direction of: A) The lesser force B) It does not move C) The
    12·2 answers
  • PLZZZZZ! HELP! I'll give brainliest to the first correct answer, five stars, and a heart!
    11·1 answer
  • If a roller coaster has 50,000 J of potential energy at the top of the first hill, how much kinetic energy does it have at the l
    13·1 answer
  • If an object reflects all of the wavelengths of visible light you would see what color
    12·1 answer
  • Worth BRAINLIEST if you help me
    5·1 answer
  • a___of water a. of bread a. of soap a. of juice a. salt. a. sand a. of glass a. of corn fill in the blanks I follow him but righ
    14·1 answer
  • A car is traveling at a constant speed on the highway. Its tires have a diameter of 68.0 cm and are rolling without sliding or s
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!