Use the ICE table approach as solution:
PbSO₄ --> Pb²⁺ + SO₄²⁻
I - 0 0
C - +s +s
E - s s
Ksp = [Pb²⁺][SO₄²⁻]
1.82×10⁻⁸ = s²
Solving for s,
s = <em>1.35×10⁻⁴ M</em>
2 Li(s) +Cl₂→ 2 Li⁺ (aq) + 2Cl⁻ (aq)
The cell potential of the reaction above is +4.40V
<em><u>calculation</u></em>
Cell potential =∈° red - ∈° oxidation
in reaction above Li is oxidized from oxidation state 0 to +1 therefore the∈° oxid = -3.04
Cl is reduce from oxidation state 0 to -1 therefore the ∈°red = +1.36 V
cell potential is therefore = +1.36 v -- 3.04 = + 4.40 V
It dissolves I think I know I am expert and. Ute
Explanation:
The reaction equation will be as follows.

Hence, moles of Na = moles of electron used
Therefore, calculate the number of moles of sodium as follows.
No. of moles = 
=
(as 1 kg = 1000 g)
= 195.65 mol
As, Q =
where F = Faraday's constant
= 
=
mol C
Relation between electrical energy and Q is as follows.
E = 
Hence, putting the given values into the above formula and then calculate the value of electricity as follows.
E = 
= 
= 
As 1 J =
kWh
Hence,
kWh
= 3.39 kWh
Thus, we can conclude that 3.39 kilowatt-hours of electricity is required in the given situation.