Vitamin K and potassium are essential micronutrients the body needs to develop and function properly. The two share some things in common, but they’re not the same.
Each has a unique set of properties and purposes. Unlike vitamin K, potassium is not a vitamin. Rather, it’s a mineral.
On the periodic table, the chemical symbol for potassium is the letter K. Thus, people sometimes confuse potassium with vitamin K.
This article highlights some of the main similarities and differences between vitamin K and potassium.
Answer: option D is right.
Explanation: There are four types of fundamental forces in nature.These are named as gravitational force,electromagnetic force,strong nuclear force and weak nuclear force.
As per the question we have to understand the role of strong nuclear force and weak nuclear force.
An atom consists of a nucleus surrounded by extra nuclear part consisting of electrons in various orbits.The nucleus contains two basic particles called protons and neutrons .Protons are positively charged while neutrons are neutral.Protons being positively charged will impart repulsive force on each other and may come out of the nucleus.But the nucleus is stable.That is due to the strong nuclear force.
Strong nuclear force is a spin dependent and charge independent force which comes into existence due to the mutual interaction of gluons which binds the protons and neutrons .Hence it is attractive in nature.It's 100 times more stronger than electromagnetic force also.
Weak nuclear force comes into existence during radio -active decay .This force is due to the exchange of ' w' and 'z' bosons[the particles like protons and neutrons having integral or zero spin] which are heavier in nature.The role of it is to change protons into neutrons and vice versa.Its a short range force.
Hence the option D is right.
Answer:
0.23 V.
Explanation:
<em>∵ ΔG° = -RT lnK.</em>
∴ ΔG° = -RTlnK = -(8.314 J/mol)(298 K) ln(7.3 × 10⁷) = - 44.86 x 10³ J/mol.
<em>∵ ΔG° = - nFE°</em>
∴ E° = - ΔG°/nF = - (- 44.86 x 10³ J/mol)/(2 x 96500 s.A/mol) = 0.2324 V ≅ 0.23 V.
Moles of NH₃ : = 7.059
<h3>Further explanation</h3>
Given
120 g NH₃
Required
moles NH₃
Solution
The mole is the number of particles contained in a substance
<em>1 mol = 6.02.10²³
</em>
Moles can also be determined from the amount of substance mass and its molar mass
Mol = mass : Molar mass
So for 120 g (molar mass of NH₃ = 17 g/mol) :
= 120 g : 17 g/mol
= 7.059
The answer to this question is true