Answer:2NaF is the correct one. It’s a simple combination and can be be split with relative ease
Explanation:
To solve this we assume that the hydrogen gas is an
ideal gas. Then, we can use the ideal gas equation which is expressed as PV =
nRT. At a constant pressure and number of moles of the gas the ratio T/V is
equal to some constant. At another set of condition of temperature, the
constant is still the same. Calculations are as follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 = (100 + 273.15) K x 2.50 L / (-196 + 273.15) K
<span>V2 = 12.09 L</span>
Therefore, the volume would increase to 12.09 L as the temperature is increased to 100 degrees Celsius.
<span />
Because you are never adding more than the substances created, nor are you creating any, but should a chemical reaction take place you could see the liquid change form into a gaseous state and that would result a loss of the liquid volume.
So to wrap it all up you can’t have more liquids than what is already there but you could always lose some due to a chemical change, hence the reason it says an open flask, the chemical change would not be collected, mass would be lost
A. It does not retain the properties of the substances that make it up