Answer: Ionic formula will be
.
Explanation:
and
ions will form a ionic compound. Ionic compounds have both metals and non-metals.
Here
is a metal and
is a non-metal.
The net charge on any compound must be 0.
So we need 2 phosphate ions to balance the charge on
ions. Similarly we need 3 Magnesium ions to balance the charge on
ions.
Criss-crossing the charges, we will get the formula as 
Criss-crossing is shown in the image below.
Answer:
[H_3 O^+] = 1.0 ×10^-13
Explanation:
If we multiply the left side we get, 1e - 13. We add 13 to the right side while subtracting the remaining value from the left side (H3O+) than combine like terms. As you will get pH = 13.00
Answer:
2.5 × 10⁻⁵ M H₃O⁺ and 4.0 × 10⁻¹⁰ M OH⁻.
Explanation:
<em>∵ pH = - log[H₃O⁺]</em>
∴ 4.6 = - log[H₃O⁺].
∴ log[H₃O⁺] = - 4.6.
∴ [H₃O⁺] = 2.51 x 10⁻⁵.
∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.
[H₃O⁺] = 2.51 x 10⁻⁵ M.
∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺] = 10⁻¹⁴/(2.51 x 10⁻⁵ M) = 3.98 × 10⁻¹⁰ M ≅ 4.0 × 10⁻¹⁰ M.
<em>So, the right choice is: 2.5 × 10⁻⁵ M H₃O⁺ and 4.0 × 10⁻¹⁰ M OH⁻.</em>
The average atomic mass of Boron: 10.431 amu
<h3>Further explanation
</h3>
Isotopes are atoms whose no-atom has the same number of protons while still having a different number of neutrons.
So Isotopes are elements that have the same Atomic Number (Proton)
Atomic mass is the average atomic mass of all its isotopes
In determining the mass of an atom, as a standard is the mass of 1 carbon-12 atom whose mass is 12 amu
Mass atom X = mass isotope 1 . % + mass isotope 2.% + ...
The average atomic mass of boron :

<span> are composed of the fragments, or CLASTS. If PRE-existing </span>minerals<span> and rock. A </span>clast<span> is a fragment of </span>geological detritus,<span>chunks and smaller grains of rock broken off other rocks by </span>physical weathering.[2]<span> Geologists use the term CLASTIC </span><span>with reference to </span>sedimentary rocks<span> as well as to particles in </span>sediment transport<span> whether in </span>suspension<span> or as </span>bed load<span>, and in </span>sediment<span> deposits.</span>