Answer:
It is known as asymmetric key cryptography it is also called public key cryptography.
Explanation:
Asymmetric key cryptography method makes use of two keys.One is used for encryption and the second one for decryption. The public key serves to encrypt plain text or verify a digital signature, while the private key is used to decrypt or decipher the encrypted text or to create a digital signature.
Wavelength is 6.976 x 10^ -35 m
Explanation:
In this, we can use De Broglie’s equation. This equation is the relationship between De Broglie’s wavelength, velocity and the mass of a moving object. In this equation, we are using plank's constant which is 6.626 x 10^-34 m^2 kg/s.
We know that one mile per hour is equivalent to 0.447 M/S.
And One gram is equivalent to 10^-3 kg.
De Broglie’s wavelength = λ ( wave length) = Plank’s constant/ Mass x velocity
λ ( wave length) = 6.626 x 10^ -34/ (425 x10^-3) x ( 50 x 0.447)
= 6.626 x 10^ -34/ 0. 425 x 22.35
= 6.626 x 10^ -34/ 9.498
= 6.976 x10^ -35 m
So, the wavelength of the football will be 6.976 x 10^ -35 m
Answer:
Rate depends on the rate constant. The rate constant depends on temperature and activation energy. If you have lower activation energy the rate will be higher. This is why catalysts are added since catalysts provide an alternate pathway that requires lower activation energy and catalysts are added to increase the rate of reaction.
Explanation:
This is only the answer if you were asking:
"Which corresponds to the faster rate: a mechanism with a small activation energy or one with a large activation energy?"
Thats what I understood about your question.
<h3>
Answer:</h3>
2.125 g
<h3>
Explanation:</h3>
We have;
- Mass of NaBr sample is 11.97 g
- % composition by mass of Na in the sample is 22.34%
We are required to determine the mass of 9.51 g of a NaBr sample.
- Based on the law of of constant composition, a given sample of a compound will always contain the sample percentage composition of a given element.
In this case,
- A sample of 11.97 g of NaBr contains 22.34% of Na by mass
A sample of 9.51 g of NaBr will also contain 22.345 of Na by mass
% composition of an element by mass = (Mass of element ÷ mass of the compound) × 100
Mass of the element = (% composition of an element × mass of the compound) ÷ 100
Therefore;
Mass of sodium = (22.34% × 9.51 g) ÷ 100
= 2.125 g
Thus, the mass of sodium in 9.51 g of NaBr is 2.125 g
<span>K3Fe(CN)6
K - 3 atoms
Fe - 1 atom
C - 6 atoms
N - 6 atoms
Altogether : 3+1+6+6= 16 atoms</span>