Assuming that the students
worldwide are being considered, because of the extremely large population, this
can be considered as a binomial distribution. A normal distribution is used most
usually as a fair approximation of the binomial. The mean is the expectation,
therefore:<span>
E[x] = np = (16)(0.22) = 3.52
<span>μ = 3.52 </span></span>
Answer:
The atmospheric pressure is
.
Explanation:
Given that,
Atmospheric pressure
drop height h'= 27.1 mm
Density of mercury 
We need to calculate the height
Using formula of pressure

Put the value into the formula



We need to calculate the new height




We need to calculate the atmospheric pressure
Using formula of atmospheric pressure

Put the value into the formula


Hence, The atmospheric pressure is
.
Let, 1st force = a
2nd force = b
A.T.Q,
a+b = 10
a-b = 6
Calculate for a & b, you'll get a=8 & b= 2
After increasing by 3, it'll be a = 8+3 = 11 & b=2+3 = 5
Resultant force at 90 degree angle = 11+5 = 16 Newtons
Because of the hint we can conclude what equation we need to solve this problem. We have power and duration that means that we need to express energy:
1 joule = 1watt * 1 second
or
E (energy) = P (power) * t (time duration)
E = 350 * 30 = 10500 joules.
Answer:
Δx=(v+v0/2)t
Explanation:
We can figure out which kinematic formula to use by choosing the formula that includes the known variables, plus the target unknown.
In this problem, the target unknown is the initial velocity v_0v
0
v, start subscript, 0, end subscript of the roller coaster.