Answer: 3.48g
Explanation:
here, we will be using conservation of momentum to solve the problem. i.e the total momentum remains unchanged, unless an external force acts on the system. We'll in thus question, there is no external force acting in the system.
Remember, momentum = mass * velocity, then
mass of blood * velocity of blood = combined mass of subject and pallet * velocity of subject and pallet
Velocity of blood = 56.5cm = 0.565m
mass of blood * 0.565 = 54kg * (0.000063/0.160)
mass of blood * 0.565 = 54 * 0.00039375
mass of blood * 0.565 = 0.001969
mass of blood = 0.00348kg
Thus, the mass of blood that leaves the heart is 3.48g
Answer:
Proton, stable subatomic particle that has a positive charge equal in magnitude to a unit of electron charge and a rest mass of 1.67262 × 10−27 kg, which is 1,836 times the mass of an electron.
Explanation:
Tectonic plate interactions are classified into three basic types: Divergent boundaries are areas where plates move away from each other, forming either mid-oceanic ridges or rift valleys. These are also known as constructive boundaries. Convergent boundaries are areas where plates move toward each other and collide.
Answer: 0.4 m
Explanation:
Given
Speed of ambulance, vs = 61.9 m/s
Speed of car = 28.5 m/s
Frequency of ambulance siren, f = 694 Hz
Velocity of sound in air, v = 343 m/s
With speed of ambulance being (61.9 m/s) -> We solve using
fd = f(v + vr) / (v - vs), where vr = 0
fd = 694 * (343 + 0) / (343 - 61.9)
fd = 694 * (343 / 281.1)
fd = 694 * 1.22
fd = 847 Hz
Recall,
λ = v/f
λ = 343/847
λ = 0.4 m
Therefore, the wavelength of the sound of the ambulance’s siren if you are standing at the position of the car is 0.4 m
Answer:
OC. blizzard
Explanation:
In the United States, the National Weather Service defines a blizzard as a severe snow storm characterized by strong winds causing blowing snow that results in low visibilities. ... A severe blizzard has winds over 72 km/h (45 mph), near zero visibility, and temperatures of −12 °C (10 °F) or lower.