Answer:
The correct reaction force in response to Heidi's action force is:
c. The friction is equal to 660 N since the beam is not accelerating.
Explanation:
Heidi's action force does not affect the beam. Since friction resists the sliding or rolling of one solid object over another, there is no friction acting on the beam, in this respect. The reaction force is what makes the dog to move because it acts on it. According to Newton's Third Law of Motion, forces always come in action-reaction pairs. This Third Law states that for every action force, there is an equal and opposite reaction force. This means that the dog exerts some force on Heidi, as he pulls it "forward with a force of 9.55 N."
An arrow which shows the direction that the probe should be moving in order for it to enter the orbit is X.
<h3>What is an orbit?</h3>
An orbit can be defined as the curved path through which a astronomical (celestial) object such as planet Earth, in space move around a Moon, Sun, planet or star.
In this scenario, if the scientists want the probe to enter the orbit they should ensure that probe moves in direction X. This ultimately implies that, the probe must move in the same direction as the orbit, in order to enter it.
Read more on orbit here: brainly.com/question/18496962
#SPJ1
Answer:
1, 2, 3, and 6 are the answers.
Explanation:
sorry for the late response
Answer:
v = 8.09 m/s
Explanation:
For this exercise we use that the work done by the friction force plus the potential energy equals the change in the body's energy.
Let's calculate the energy
starting point. Higher
Em₀ = U = m gh
final point. To go down the slope
Em_f = K = ½ m v²
The work of the friction force is
W = fr L cos 180
to find the friction force let's use Newton's second law
Axis y
N - W_y = 0
N = W_y
X axis
Wₓ - fr = ma
let's use trigonometry
sin θ = y / L
sin θ = 11/110 = 0.1
θ = sin⁻¹ 0.1
θ = 5.74º
sin 5.74 = Wₓ / W
cos 5.74 = W_y / W
Wₓ = W sin 5.74
W_y = W cos 5.74
the formula for the friction force is
fr = μ N
fr = μ W cos θ
Work is friction force is
W_fr = - μ W L cos θ
Let's use the relationship of work with energy
W + ΔU = ΔK
-μ mg L cos 5.74 + (mgh - 0) = 0 - ½ m v²
v² = - 2 μ g L cos 5.74 +2 (gh)
v² = 2gh - 2 μ gL cos 5.74
let's calculate
v² = 2 9.8 11 - 2 0.07 9.8 110 cos 5.74
v² = 215.6 -150.16
v = √65.44
v = 8.09 m/s