The outer planets have a high gravity due to their large size
The solution has reacted.
Answer:
Approximately
, assuming that the volume of these two charged objects is negligible.
Explanation:
Assume that the dimensions of these two charged objects is much smaller than the distance between them. Hence, Coulomb's Law would give a good estimate of the electrostatic force between these two objects regardless of their exact shapes.
Let
and
denote the magnitude of two point charges (where the volume of both charged object is negligible.) In this question,
and
.
Let
denote the distance between these two point charges. In this question,
.
Let
denote the Coulomb constant. In standard units,
.
By Coulomb's Law, the magnitude of electrostatic force (electric force) between these two point charges would be:
.
Substitute in the values and evaluate:
.
Answer:
x_{cm} = 4.644 10⁶ m
Explanation:
The center of mass is given by the equation
= 1 /
∑
Where M_{total} is the total masses of the system,
is the distance between the particles and
is the masses of each body
Let's apply this equation to our problem
M = Me + m
M = 5.98 10²⁴ + 7.36 10²²
M = 605.36 10²² kg
Let's locate a reference system located in the center of the Earth
Let's calculate
x_{cm} = 1 / 605.36 10²² [Me 0 + 7.36 10²² 3.82 10⁸]
x_{cm} = 4.644 10⁶ m