1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bonufazy [111]
3 years ago
5

Not a assignment question, just wanna know if scientists know what’s beyond the edge universe

Physics
2 answers:
Bond [772]3 years ago
8 0
No they don’t. All the pictures we see if the universe are computer generated. Well, most of them are. We don’t exactly know how the milky way looks. It’s just very good guess.
Oksanka [162]3 years ago
6 0
I don’t think so because we can even get to mars yet how are we supposed to know what’s beyond our universe like i understand beyond solar system but not our universe
You might be interested in
Please help i need an explanation
const2013 [10]

Answer:

--

Explanation:

All potential and kinetic energy is transferred into heat. Therefore keeping the law of conservation of energy valid. No energy is created nor destroyed only changing shape.

6 0
3 years ago
A particle moving with initial velocity of 5m/s is subjected to a uniform acceleration of -2.5 m/s2.find the displacement for ne
LUCKY_DIMON [66]
1/2vt^2-1/2at^2
1/2*5*16-1/2*2,5*16=20
6 0
3 years ago
A uniformly charged ball of radius a and charge –Q is at the center of a hollowmetal shell with inner radius b and outer radius
vlabodo [156]

Answer:

<u>r < a:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}

<u>r = a:</u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>a < r < b:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>r = b:</u>

E = \frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}

<u>b < r < c:</u>

E = 0

<u>r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

<u>r < c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

Explanation:

Gauss' Law will be applied to each region to find the E-field.

\int \vec{E}d\vec{a} = \frac{Q_{encl}}{\epsilon_0}

An imaginary sphere is drawn with radius r, which is equal to the point where the E-field is asked. The area of this imaginary sphere is multiplied by E, and this is equal to the charge enclosed by this imaginary surface divided by ε0.

<u>r<a:</u>

Since the ball is uniformly charged and not hollow, then the enclosed charge can be found by the following method: If the total ball has a charge -Q and volume V, then the enclosed part of the ball has a charge Q_enc and volume V_enc. Then;

\frac{Q}{V} = \frac{Q_{encl}}{V_{encl}}\\\frac{Q}{\frac{4}{3}\pi a^3} = \frac{Q_{encl}}{\frac{4}{3}\pi r^3}\\Q_{encl} = \frac{Qr^3}{a^3}

Applying Gauss' Law:

E4\pi r^2 = \frac{-Qr^3}{\epsilon_0 a^3}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}\\E = \frac{r}{4\pi a^3}\frac{Q}{\epsilon_0}

The minus sign determines the direction of the field, which is towards the center.

<u>At r = a: </u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>At a < r < b:</u>

The imaginary surface is drawn between the inner surface of the metal sphere and the smaller ball. In this case the enclosed charge is equal to the total charge of the ball, -Q.

<u />E4\pi r^2 = \frac{-Q}{\epsilon_0}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}<u />

<u>At r = b:</u>

<u />E = -\frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}<u />

Again, the minus sign indicates the direction of the field towards the center.

<u>At b < r < c:</u>

The hollow metal sphere has a net charge of +2Q. Since the sphere is a conductor, all of its charges are distributed across its surface. No charge is present within the sphere. The smaller ball has a net charge of -Q, so the inner surface of the metal sphere must possess a net charge of +Q. Since the net charge of the metal sphere is +2Q, then the outer surface of the metal should possess +Q.

Now, the imaginary surface is drawn inside the metal sphere. The total enclosed charge in this region is zero, since the total charge of the inner surface (+Q) and the smaller ball (-Q) is zero. Therefore, the Electric region in this region is zero.

E = 0.

<u>At r < c:</u>

The imaginary surface is drawn outside of the metal sphere. In this case, the enclosed charge is +Q (The metal (+2Q) plus the smaller ball (-Q)).

E4\pi r^2 = \frac{Q}{\epsilon_0}\\E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>At r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

3 0
3 years ago
The cornea behaves as a thin lens of focal length approximately 1.80 {\rm cm}, although this varies a bit. The material of which
spayn [35]

Answer:

The height of the image will be "1.16 mm".

Explanation:

The given values are:

Object distance, u = 25 cm

Focal distance, f = 1.8 cm

On applying the lens formula, we get

⇒  \frac{1}{v} -\frac{1}{u} =\frac{1}{f}

On putting estimate values, we get

⇒  \frac{1}{v} -\frac{1}{(-25)} =\frac{1}{1.8}

⇒  \frac{1}{v} =\frac{1}{1.8} -\frac{1}{25}

⇒  v=1.94 \ cm

As a result, the image would be established mostly on right side and would be true even though v is positive.

By magnification,

m=\frac{v}{u} and m=\frac{h_{1}}{h_{0}}

⇒  \frac{v}{u} =\frac{h_{1}}{h_{0}}

⇒  \frac{1.94}{25}=\frac{{h_{1}}}{15}

⇒  {h_{1}}=1.16 \ mm

8 0
3 years ago
The change in pitch of a train's horn as it passes while you are standing still can be explained by
alexgriva [62]

The change in pitch of a train's horn as it passes while you are
standing still can be described by the Doppler effect, but that
doesn't explain it.

8 0
3 years ago
Other questions:
  • 16. How much does the gravitational potential
    5·1 answer
  • A pulse moving to the right along the x axis is represented by the function of
    9·1 answer
  • The most recent evidence supporting the theory of plate tectonics would include A) GPS monitoring of plate speeds and movements.
    12·1 answer
  • Suppose a person sits on a skateboard with her feet up and throws a ball. Explain why she will move as a result of throwing the
    13·1 answer
  • 3. Differentiate between:<br> Law of floatation and Archimedes' principle
    15·1 answer
  • Suppose you pull two opposite sides of the loop away from each other, such that the other two sides get closer, reducing the loo
    15·1 answer
  • Engineers are designing a curved section of a highway. If the radius of curvature of the curve is 173 m, at what angle should th
    5·1 answer
  • 1. Mean Billy is standing on a bridge, waiting for his sister to walk underneath so that he can drop his vanilla ice cream cone
    9·1 answer
  • fill in the blank ,if a charge body touches the disc of an uncharged electroscope the leaves ------------------​
    13·1 answer
  • If a car increases its velocity from +6 m/s to +30 m/s in 6 seconds, its acceleration in m/s2 is__________.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!