Just draw a rectangle and hope it's right
Answer:
see below
Step-by-step explanation:
(ab)^n=a^n * b^n
We need to show that it is true for n=1
assuming that it is true for n = k;
(ab)^n=a^n * b^n
( ab) ^1 = a^1 * b^1
ab = a * b
ab = ab
Then we need to show that it is true for n = ( k+1)
or (ab)^(k+1)=a^( k+1) * b^( k+1)
Starting with
(ab)^k=a^k * b^k given
Multiply each side by ab
ab * (ab)^k= ab *a^k * b^k
( ab) ^ ( k+1) = a^ ( k+1) b^ (k+1)
Therefore, the rule is true for every natural number n
I believe it's<span> 8cos(x)⁸ - 16cos(x)⁶ + 10cos(x)⁴ - 2cos(x)².
</span>

<span>
Alternately, you can write [</span><span><span>1 / (tan(2x) - cot(2x))] + [cos(8x) / (tan(2x) - cot(2x))].
</span></span>

<span><span>
</span></span>