Answer:
It's centripetal acceleration is 301.7 m/s²
Explanation:
The formula to be used here is that of the centripetal acceleration which is
ac = rω²
where ac is the centripetal acceleration = ?
ω is the angular velocity = 3 revolutions per second is to be converted to radian per second: 3 × 2π = 3 × 2 × 3.14 = 18.84 rad/s
r is the radius = 0.85 m
ac = 0.85 × 18.84²
ac = 301.7 m/s²
It's centripetal acceleration is 301.7 m/s²
Answer:
Impulse = 1000 Ns
Explanation:
Given the following data;
Force of collision = 1000 kg•m/s.
Time = 1 seconds
To find the impulse;
Mathematically, the impulse experienced by an object or body is given by the formula;
Impulse = force * time
Substituting into the formula, we have;
Impulse = 1000 * 1
Impulse = 1000 Ns
Answer:
Theta1 = 12° and theta2 = 168°
The solution procedure can be found in the attachment below.
Explanation:
The Range is the horizontal distance traveled by a projectile. This diatance is given mathematically by Vo cos(theta) t. Where t is the total time of flight of the projectile in air. It is the time taken for the projectile to go from starting point to finish point. This solution assumes the projectile finishes uts motion on the same horizontal level as the starting point and as a result the vertical displacement is zero (no change in height).
In the solution as can be found below, the expression to calculate the range for any launch angle theta was first derived and then the required angles calculated from the equation by substituting the values of the the given quantities.
It's either staying there or is going at the same pace
Answer:27 km per hour West + 17 km per hour North