1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dennis_Churaev [7]
3 years ago
11

Which equation could be rearranged to calculate the frequency of a wave?

Physics
2 answers:
Flauer [41]3 years ago
8 0

Answer:

C. wavelength = speed/frequency

Explanation:  I got it right

34kurt3 years ago
8 0

Answer:

Which equation could be rearranged to calculate the frequency of a wave?

1) wavelength = frequency/speed <<<---CORRECT

2) frequency = wavelength/speed

3) wavelength = speed/frequency

4) frequency = speed x wavelength

Explanation:

2021 EDGE 100% test score

You might be interested in
4. How long would it take for a water balloon to fall 39 m if we dropped it starting from rest down an
Paraphin [41]

Answer:

Around 2.8212 sec

Explanation:

Given the eqn x=1/2at^2+vot

your vo=0

39=1/2(-9.8)t^2

=7.95=t^2

=2.82sec

8 0
3 years ago
Will mark as brainliest if correct!!!!!!!!
ArbitrLikvidat [17]

Answer:

Light refracts when its speed changes as it enters a new medium.

Explanation:

Bending of light wave while it entering a medium with different speed is called refraction of light. Light passing from a faster medium to the slower medium bends the light rays toward the normal to boundary between two media. The amount of the  bending of light depends on refractive index of the two media which is described by  the Snell's Law. The angle of incidence is not equal to  angle of refraction. Rainbow is caused but this refraction phenomena. Also Refraction is used in magnifying glasses, prism and lenses

 

7 0
3 years ago
A kangaroo jumps straight up to a vertical height of 1.45 m. How long was it in the air before returning to Earth?
dexar [7]

Answer:

1.08 s

Explanation:

From the question given above, the following data were obtained:

Height (h) reached = 1.45 m

Time of flight (T) =?

Next, we shall determine the time taken for the kangaroo to return from the height of 1.45 m. This can be obtained as follow:

Height (h) = 1.45 m

Acceleration due to gravity (g) = 9.8 m/s²

Time (t) =?

h = ½gt²

1.45 = ½ × 9.8 × t²

1.45 = 4.9 × t²

Divide both side by 4.9

t² = 1.45/4.9

Take the square root of both side

t = √(1.45/4.9)

t = 0.54 s

Note: the time taken to fall from the height(1.45m) is the same as the time taken for the kangaroo to get to the height(1.45 m).

Finally, we shall determine the total time spent by the kangaroo before returning to the earth. This can be obtained as follow:

Time (t) taken to reach the height = 0.54 s

Time of flight (T) =?

T = 2t

T = 2 × 0.54

T = 1.08 s

Therefore, it will take the kangaroo 1.08 s to return to the earth.

3 0
3 years ago
A baseball sits motionless near first base on a baseball diamond. What statement
Citrus2011 [14]

Answer:

B. There are no forces acting on the ball.

Explanation:

There are no forces acting on the ball.

5 0
2 years ago
Find the quantity of heat needed
krok68 [10]

Answer:

Approximately 3.99\times 10^{4}\; \rm J (assuming that the melting point of ice is 0\; \rm ^\circ C.)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that 0.100\; \rm kg of ice from (-10\; \rm ^\circ C) to 0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn 0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed 0.100\; \rm kg of water from 0\; \rm ^\circ C to 10\;\ rm ^\circ C.

The following equation gives the amount of energy Q required to raise the temperature of a sample of mass m and specific heat capacity c by \Delta T:

Q = c \cdot m \cdot \Delta T,

where

  • c is the specific heat capacity of the material,
  • m is the mass of the sample, and
  • \Delta T is the change in the temperature of this sample.

For the first part of energy input, c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}.

Similarly, for the third part of energy input, c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy Q required to melt a sample of mass m and latent heat of fusion L_\text{f} is:

Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:

\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}.

Find the sum of these three parts of energy:

\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}.

3 0
3 years ago
Other questions:
  • If the velocity of an object changes from 15 m/s during a time interval of 4s what is the acceleration of the object
    7·1 answer
  • An open vertical tube has water in it. a tuning fork vibrates over its mouth. as the water level is lowered in the tube, a reson
    14·1 answer
  • Coal as a fuel source led to the invention of
    11·1 answer
  • What is the structure of a magnet?
    11·1 answer
  • What is one advantage of doing a feild experiment instead of a lobortory expirament
    6·1 answer
  • When do the heavier elements finally form? Give a few example.
    12·1 answer
  • You drop a 10 kg bowling ball off a 2 story building, what is the force generated by
    8·1 answer
  • Convert time from 12-hour to 24-hour clock. ​
    15·1 answer
  • Think of three questions that will help you clarify your understanding of how of the factors that have contributed to the rise i
    10·2 answers
  • Caleb is filling up water balloons for the Physics Olympics balloon tosscompetition. Caleb sets a 0.50-kg spherical water balloo
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!