1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Black_prince [1.1K]
3 years ago
13

The electric field in a region of space increases from 0 to 2150 N/C in 5.00 s. What is the magnitude of the induced magnetic fi

eld B around a circular area with a diameter of 0.440 m oriented perpendicularly to the electric field?
Physics
1 answer:
Feliz [49]3 years ago
3 0

To solve this problem we will use the Ampere-Maxwell law, which   describes the magnetic fields that result from a transmitter wire or loop in electromagnetic surveys. According to Ampere-Maxwell law:

\oint \vec{B}\vec{dl} = \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}

Where,

B= Magnetic Field

l = length

\mu_0 = Vacuum permeability

\epsilon_0 = Vacuum permittivity

Since the change in length (dl) by which the magnetic field moves is equivalent to the perimeter of the circumference and that the electric flow is the rate of change of the electric field by the area, we have to

B(2\pi r) = \mu_0 \epsilon_0 \frac{d(EA)}{dt}

Recall that the speed of light is equivalent to

c^2 = \frac{1}{\mu_0 \epsilon_0}

Then replacing,

B(2\pi r) = \frac{1}{C^2} (\pi r^2) \frac{d(E)}{dt}

B = \frac{r}{2C^2} \frac{dE}{dt}

Our values are given as

dE = 2150N/C

dt = 5s

C = 3*10^8m/s

D = 0.440m \rightarrow r = 0.220m

Replacing we have,

B = \frac{r}{2C^2} \frac{dE}{dt}

B = \frac{0.220}{2(3*10^8)^2} \frac{2150}{5}

B =5.25*10^{-16}T

Therefore the magnetic field around this circular area is B =5.25*10^{-16}T

You might be interested in
You drop a rock down a well and hear a splash 3 s later. As Charlie Brown would say, the well is 3 seconds deep. How fast is the
vampirchik [111]
Since it was dropped, it should be the speed of gravity which is 9.8 meters/second
5 0
2 years ago
A particle travels clockwise on a circular path of diameter​ R, monitored by a sensor on the circle at point​ P; the other endpo
kotykmax [81]

We make a graphic of this problem to define the angle.

The angle we can calculate through triangle relation, that is,

sin\theta = \frac{c}{QP}\\sin\theta = \frac{c}{R}\\\theta=sin^{-1}\frac{c}{R}

With this function we should only calculate the derivate in function of c

\frac{d\theta}{dc} = \frac{1}{\sqrt{1-\frac{c^2}{R^2}}}(\frac{c}{R})'\\\frac{d\theta}{dc} = \frac{1}{\sqrt{R^2-c^2}}

That is the rate of change of \theta.

b) At this point we need only make a substitution of 0 for c in the equation previously found.

\frac{d\theta}{dc}\big|_{c=0} = \frac{1}{\sqrt{R^2-0}}\\\frac{d\theta}{dc}\big|_{c=0} = \frac{1}{R}

Hence we have finally the rate of change when c=0.

6 0
3 years ago
Which of the following is equal to the area under a velocity-time graph
Ksenya-84 [330]

-- The area under a velocity/time graph, between two points in time, is the difference in displacement during that period of time.

-- The area under a speed/time graph, between two points in time, is the distance covered during that period of time.

5 0
3 years ago
Read 2 more answers
A first order reaction, A -> products, has a rate reaction of .00250 Ms-1 when [A] = . 484 M. (a) What is the rate constant,
tamaranim1 [39]

Answer: a)  The rate constant, k, for this reaction is 0.00516s^{-1}

b) No t_{\frac{1}{2}} does not depend on concentration.

Explanation:

Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

A\rightarrow products

Given: Order with respect to A = 1

Thus rate law is:

a) Rate=k[A]^1

k= rate constant

0.00250=k[0.484]^1

k=0.00516s^{-1}

The rate constant, k, for this reaction is 0.00516s^{-1}

b) Expression for rate law for first order kinetics is given by:

t=\frac{2.303}{k}\log\frac{a}{a-x}

where,

k = rate constant  

t = age of sample

a = let initial amount of the reactant  

a - x = amount left after decay process  

Half life is the amount of time taken by a radioactive material to decay to half of its original value.

t_{\frac{1}{2}}=\frac{2.303}{k}\log\frac{100}{50}

t_{\frac{1}{2}}=\frac{0.69}{k}

Thus t_{\frac{1}{2}} does not depend on concentration.

8 0
3 years ago
A frictionless piston-cylinder device contains 10 kg of superheated vapor at 550 kPa and 340oC. Steam is then cooled at constant
Alla [95]

Answer:

a) the work (W) done during the process is -2043.25 kJ

b) the work (W) done during the process is -2418.96 kJ

Explanation:

Given the data in the question;

mass of water vapor m = 10 kg

initial pressure P₁ = 550 kPa

Initial temperature T₁ = 340 °C

steam cooled at constant pressure until 60 percent of it, by mass, condenses; x = 100% - 60% = 40% = 0.4

from superheated steam table

specific volume v₁ = 0.5092 m³/kg

so the properties of steam at p₂ = 550 kPa, and dryness fraction

x = 0.4

specific volume v₂ = v_f + xv_{fg

v₂ = 0.001097 + 0.4( 0.34261 - 0.001097 )

v₂ = 0.1377 m³/kg

Now, work done during the process;

W = mP₁( v₂ - v₁ )

W = 10 × 550( 0.1377 - 0.5092 )

W = 5500 × -0.3715

W = -2043.25 kJ

Therefore, the work (W) done during the process is -2043.25 kJ

( The negative, indicates work is done on the system )

b)

What would the work done be if steam were cooled at constant pressure until 80 percent of it, by mass, condenses

x₂ = 100% - 80% = 20% = 0.2

specific volume v₂ = v_f + x₂v_{fg

v₂ = 0.001097 + 0.2( 0.34261 - 0.001097 )

v₂ = 0.06939 m³/kg

Now, work done during the process will be;

W = mP₁( v₂ - v₁ )

W = 10 × 550( 0.06939 - 0.5092 )

W = 5500 × -0.43981

W = -2418.96 kJ

Therefore, the work (W) done during the process is -2418.96 kJ

3 0
3 years ago
Other questions:
  • A student constructed a series circuit consisting of a 12.0-volt battery, a 10.0-ohm lamp, and a
    8·1 answer
  • A2 kg block is accelerating at the rate of 5 m/s² while being acted on by two forces. One of the forces equals 30 N, 0°. What ar
    9·1 answer
  • PLEASE HELP Which landforms can be associated with the three types of plate boundaries?
    7·1 answer
  • 2 decaliters + 800 deciliters = __________ liters?
    14·2 answers
  • What do you see when you stand infront of a concave mirror, beyond its focal point, and look at yourself?
    9·2 answers
  • Two small objects each with a net charge of Q (positive) exert a force of magnitude F on each other. We replace one of the objec
    9·1 answer
  • The potential energy of a spring is a. inversely proportional to the square of the amount b. the spring that is stretched from i
    13·1 answer
  • PLEASE HELP. I WILL MARK BRAINIEST
    13·1 answer
  • 5. What structure did Friedrich Kekule discover that allowed carbon atoms can bond
    12·1 answer
  • Find the following answer based on the image.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!