Answer:
C. Potential energy is related to an object's position, and kinetic
Explanation:
The energy contained in the small motions of the object's molecules can be broken up into a combination of microscopic kinetic energy and potential energy.
Answer:
129900
Explanation:
Given that
Mass of the particle, m = 1 g = 1*10^-3 kg
Speed of the particle, u = ½c
Speed of light, c = 3*10^8
To solve this, we will use the formula
p = ymu, where
y = √[1 - (u²/c²)]
Let's solve for y, first. We have
y = √[1 - (1.5*10^8²/3*10^8²)]
y = √(1 - ½²)
y = √(1 - ¼)
y = √0.75
y = 0.8660, using our newly gotten y, we use it to solve the final equation
p = ymu
p = 0.866 * 1*10^-3 * 1.5*10^8
p = 129900 kgm/s
thus, we have found that the momentum of the particle is 129900 kgm/s
<span>A researcher claiming that females were more empathetic than males would test that hypothesis by using inferential statistics.</span>
Answer:Increase
Explanation:
Given
You are holding 2 kg mass in each outstreched hand
If the masses are dropped then Moment of inertia will decease by 
Where m=2 kg
r=length of stretched arm
Since angular momentum is conserved therefore decrease in Moment of inertia will result in increase of angular velocity
as I
=constant
I=Moment of inertia
=angular velocity
Answer:
Explanation:
Frictional force acting on the child = μ mg cosθ
, μ is coefficient of kinetic friction , m is mass of child θ is inclination
work done by frictional force
μ mg cosθ x d , d is displacement on inclined plane
work done = .13 x 276 x cos34 x 5.9
= 175.5 J
This work will be converted into heat energy.
b ) Initial energy of child = mgh + 1/2 m v ² , h is height , v is initial velocity
= 276 x 5.9 sin34 + 1/2 x 276 / 9.8 x .518² [ mass m = 276 / g ]
= 910.59 + 3.77
= 914.36 J
loss of energy due to friction = 175.5
Net energy at the bottom
= 738.86 J
If v be the velocity at the bottom
1/2 m v² = 738 .86
.5 x (276 / 9.8) x v² = 738.86
v² = 52.47
v = 7.24 m /s .