Answer:
86.3 g of N₂ are in the room
Explanation:
First of all we need the pressure from the N₂ in order to apply the Ideal Gases Law and determine, the moles of gas that are contained in the room.
We apply the mole fraction:
Mole fraction N₂ = N₂ pressure / Total pressure
0.78 . 1 atm = 0.78 atm → N₂ pressure
Room temperature → 20°C → 20°C + 273 = 293K
Let's replace data: 0.78 atm . 95L = n . 0.082 . 293K
(0.78 atm . 95L) /0.082 . 293K = n
3.08 moles = n
Let's convert the moles to mass → 3.08 mol . 28g /1mol = 86.3 g
Answer:
The correct answer is - D. Freezing point depression.
Explanation:
When rock salt is spread over snow-covered icy roads, it generates a liquid layer over it by melting from the surface thereby lowering or depression in the freezing point below the ice.
Therefore, due to this liquid layer comes into the contact with the ice present on the road and causes other ice to melts. This keeps on decreasing the volume of the ice on the road therefore, rock salts spread on the roads during a snowstorm.
10 electrons
Explanation:
The maximum number of electrons in a single d-subshell is 10 electrons.
The d-sub-orbital used to denote azimuthal or secondary quantum numbers.
The maximum number of electrons in the orbitals of sublevels are:
two electrons in the s-sublevel, it has one orbital
six electrons in the p-sublevel, it has three orbital
ten electrons in the d- sublevel, it has five orbitals
fourteen electrons in the f-sublevel, it has seven orbitals
The maximum number of electrons in an orbital is two.
learn more:
Atomic orbitals brainly.com/question/1832385
#learnwithBrainly