Answer:
1.97 m/s.
Explanation:
From the question,
Using the law of conservation of energy,
The energy stored in the charged plate = Kinetic energy of the mass
1/2(qV) = 1/2mv².......................... Equation 1
Where q = charge, V = voltage, m = mass, v = velocity.
make v the subject of the equation
v = √(qV/m)......................... Equation 2
Given: q = 6.5×10⁻⁶ C, V = 12000 Volts, m = 0.02 kg
Substitute these values into equation 2
v = √(6.5×10⁻⁶×12000 /0.02)
v = √3.9
v = 1.97 m/s.
Answer:
wave
Explanation:
A wave is defined as the disturbance that causes the movement of energy. The energy is transferred as the waves move from one place to another. A medium is required for the transfer of energy. Usually a wave travels through air or water. The process is carried on at a specific speed that is termed as the speed of propagation.
That is a vector. It is a combination of direction and velocity. (You can think of Vector from Despicable Me to help you remember the term)
:)
Answer: 
Explanation:
Let's begin by explaining that according to Kepler’s Third Law of Planetary motion “The square of the orbital period
of a planet is proportional to the cube of the semi-major axis
of its orbit”:
(1)
Now, if
is measured in years (Earth years), and
is measured in astronomical units (equivalent to the distance between the Sun and the Earth:
), equation (1) becomes:
(2)
So, knowing
and isolating
from (2) we have:
(3)
(4)
Finally:
T
his is the distance between the dwarf planet and the Sun in astronomical units
Converting this to kilometers, we have:

Answer:
see explanation
Explanation:
You are missing the chart with the rates and time to do this, however, I wll do it with a similar exercise here, and you only need to replace the procedure with your data:
See the attached table.
From the left we have:
r = 1/2 (50 + 48 + 46 + 44 + 42 + 40) = 135 L/min
From the right we have:
r = 1/2 (48 + 46 +44 + 42 + 40 + 38) = 129 L/min.
And this should be the correct answer. Watch your chart and replace if it's neccesary.