The particles can undergo small oscillations around x₂.
The given parameters;
- <em>initial energy of the particles = E₁</em>
- <em>final energy of the particles, E₂ = 0.33E₁</em>
The movement of the particles depends on the kinetic energy of the particles.
When kinetic energy of the particles is 100%, the particles can oscillate from x₁ to x₅.
However, when the total energy of this particles is reduced to one-third (¹/₃) or 33% of the initial energy of the particle, the oscillation of the particles will be reduced.
- The maximum position the particle can oscillate is x₅
- The half position the particles can oscillate is x₃
Since 33% is less than the half of the energy of the particle, the particle will oscillate between x₁ and x₂.
Thus, we can conclude that the particles can undergo small oscillations around x₂.
Learn more here:brainly.com/question/23910777
Answer:
If the voltage is increased then the electric field is higher, and electron velocity (average) is proportional to this field. Then you have an increase in speed. And current is total charge passing per time unit, so current is proportional to velocity value of charge (and to voltage in resistors and wire).
Explanation:
Answer:



Explanation:
By analyzing the torque on the wheel we get:
Solving for T: 
On the object:
Replacing our previous value for T:

The relation between angular and linear acceleration is:

So,

Solving for α:

The linear acceleration will be:

And finally, the tension will be:

These are the values of all the variables: α, a, T
Answer:
h = 4271.43 m
Explanation:
given,
Volume of the water = 1 m³
temperature decrease by = 10°C
heat removed from water
Q = m c ΔT
Q = ρ V c ΔT
= 1000 × 1 × 4186 × 10
= 4.186 × 10⁷ J
energy is used to do work to move the water against its weight
Q = force × displacement
4.186 × 10⁷ J = m g × h
4.186 × 10⁷ J = 1000 × 1 × 9.8 × h
h = 4271.43 m
hence, the change in height of is equal to h = 4271.43 m
Answer:
Explanation:
1) True. The stored energy (U) is proportional to the electric field strength (E). The electric field strength decreases when a dielectric is introduced hence inserting a dielectric decreases U.
2) False. From the formula
, capacitance is inversely proportional to distance hence if the distance is doubled, capacitance decreases.
3) False. As the distance between the electric field and the object increases, its electric field decreases.
4) False. If a dielectric is inserted, the plates are further separated. Q stays the same.
5) True. The electric field strength decreases when a dielectric is introduced and capacitance is inversely proportional to electric field hence Inserting a dielectric increases C
6) True. If a dielectric is inserted, the plates are further separated. Q stays the same.
7) True. When the distance is doubled, U increases