Answer:
Waves. Refraction is an effect that occurs when a light wave, incident at an angle away from the normal, passes a boundary from one medium into another in which there is a change in velocity of the light. ... The wavelength decreases as the light enters the medium and the light wave changes direction.
Explanation:
As a wavelength increases in size, its frequency and energy (E) decrease. From these equations you may realize that as the frequency increases, the wavelength gets shorter. ... Mechanical and electromagnetic waves with long wavelengths contain less energy than waves with short wavelengths.
Answer:
(a) 4.0334Ω
(b)parallel
Explanation:
for resistors connected in parallel;

Req =3.03Ω , R1 =12.18Ω



R2=1/0.2479
R2=4.0334Ω
(b)parallel connection is suitable for the desired total resistance. series connection can not be used to achieve a lower resistance as the equation for series connection is.
Req = R1+R2
Answer:
B. A repulsive force of 8.0*10^3 N.
Explanation:
As we know by Coulomb's law that the electrostatic force between two charges is given as

here we know that


r = 3.0 m
now we have


since both charges are similar charges so they will repel each other by the force we calculated above so correct answer will be
B. A repulsive force of 8.0*10^3 N.
Answer:
a) 
b) 
c) 
Explanation:
From the exercise we know the initial velocity of the projectile and its initial height

To find what time does it take to reach maximum height we need to find how high will it go
b) We can calculate its initial height using the following formula
Knowing that its velocity is zero at its maximum height



So, the projectile goes 1024 ft high
a) From the equation of height we calculate how long does it take to reach maximum point



Solving the quadratic equation



So, the projectile reach maximum point at t=2s
c) We can calculate the final velocity by using the following formula:


Since the projectile is going down the velocity at the instant it reaches the ground is:

Answer:
q = C V charge on 1 capacitor
q = 1 * 10E-6 * 110 = 1.1 * 10E-4 C per capacitor
N = Q / q = 1 / 1.1 * 10E-4 = 9091 capacitors