Answer: A. The total displacement divided by the time and C. The slope of the ant's displacement vs. time graph.
Explanation:
Hi! The question seems incomplete, but I found the options on the internt:
A. The total displacement divided by the time.
B. The slope of the ant's acceleration vs. time graph.
C. The slope of the ant's displacement vs. time graph.
D. The average acceleration divided by the time.
Now, since we know the ant is travelling at a constant speed, its average velocity
will be expressed by the following equation:

Where:
is the ant's total displacement
is the time it took to the ant to travel to the kitchen
Hence one of the correct options is: A. The total displacement divided by the time
On the other hand, this can be expressed by a displacement vs. time graph graph, where the slope of that line leads to the equation written above. So, the other correct option is:
C. The slope of the ant's displacement vs. time graph.
Integrating the velocity equation, we will see that the position equation is:

<h3>How to get the position equation of the particle?</h3>
Let the velocity of the particle is:

To get the position equation we just need to integrate the above equation:


Then:


Replacing that in our integral we get:


Where C is a constant of integration.
Now we remember that 
Then we have:

To find the value of C, we use the fact that f(0) = 0.

C = -1 / 3
Then the position function is:

Integrating the velocity equation, we will see that the position equation is:

To learn more about motion equations, refer to:
brainly.com/question/19365526
#SPJ4
The chaotic nature of the Solar System excluding Pluto was established by the numerical computation of the maximum Lyapunov exponent of its secular system over 200 myr.
<h3>What is chaotic motion of the solar system ?</h3>
There has been an increase in awareness of chaotic dynamics in the solar system over the past 20 years. The orbits of tiny objects in the solar system, such as asteroids, comets, and interplanetary dust, are now known to be chaotic and to experience significant variations across geological time periods.
- a completely unpredictable orbit, or one where significant changes in the orbit can result from even small changes in the position and/or velocity of the orbiting entity.
Learn more about Chaotic motion here:
brainly.com/question/13717859
#SPJ4
Answer:
See the explanation below.
Explanation:
The force is a vector therefore we can decompose the force into components x & y. as we need the horizontal component of the force, we must use the cosine function of the angle.
![F_{1x}=30.8*cos(20)\\F_{1x}=28.94[N]\\F_{2x}=34.3*cos(20)\\\\F_{2x}= 32.23[N]](https://tex.z-dn.net/?f=F_%7B1x%7D%3D30.8%2Acos%2820%29%5C%5CF_%7B1x%7D%3D28.94%5BN%5D%5C%5CF_%7B2x%7D%3D34.3%2Acos%2820%29%5C%5C%5C%5CF_%7B2x%7D%3D%2032.23%5BN%5D)
relation between potential difference and electric field is given as

so here we know that
d = 3 cm



So now when plates are separated to 4 cm distance carefully
the potential difference between them will change but the electric field between them will remain constant
So at distance of 4 cm also the electric field will be E = 1000 N/C