Work = Force multiplied by the distance(or displacement)
Answer: slow revolution and fast rotation
Solar system has 8 planets. 4 inner rocky planets - Mercury, Venus, Earth and Mars and 4 outer gaseous planets - <u>Jupiter, Saturn, Uranus and Neptune.</u> The outer planets have few common features.
They are gaseous. There period of revolution is larger than the inner planets which means that they have slow revolution about the Sun. One day on the outer planets is smaller than the inner planets which means they have fast rotation.
<u>For example,</u> Jupiter has revolves around sun in 11.86 Earth years and rotates about axis in 9.8 Earth hours. Uranus revolves around sun in 84 Earth years and rotates on its axis 17.9 Earth hours.
Answer:
8) 709.8875 J
9) The object is at 7.24375 m from the ground
10) Kinetic energy increases as the object falls.
Explanation:
We use the expression for the displacement h(t) as a function of time of an object experiencing free fall:
h(t) = hi - (g/2) t^2
hi being the initial position of the object (10m) above ground, g the acceleration of gravity (9.8 m/s^2), and t the time (in our case 0.75 seconds):
h(0.75) = 10 - 4/9 (0.75)^2 = 7.24375 m
This is the position of the 10 kg object after 0.75 seconds (answer for part 9)
Knowing this position we can calculate the potential energy of the object when it is at this height, using the formula:
U = m g h = 10kg * 9.8 (m/s^2) * 7.24375 m = 709.8875 J (answer for part 8)
Part 10)
the kinetic energy of the object increases as it gets closer to ground, since its velocity is increasing in magnitude because is being accelerated in its motion downwards.
Answer:
Potential
Explanation:
The water in the bathtub has more potential energy than that in the tea cup because it has a greater number of water molecules.
Mass is a parameter that is very instrumental in determining potential energy.
The potential energy of a body is the energy due to the position of that body.
Potential energy = mass x acceleration due gravity x height
Mass is the amount of matter in a substance. Water in the tub will have more mass and contain a greater number of water molecules there in.
Since potential energy is directly proportional to mass, then, it will have a greater amount of potential energy.
To solve this problem we will apply the expression of charge per unit of time in a capacitor with a given resistance. Mathematically said expression is given as

Here,
q = Charge
t = Time
R = Resistance
C = Capacitance
When the charge reach its half value it has passed 10ms, then the equation is,




We know that RC is equal to the time constant, then

Therefore the time constant for the process is about 14ms