Answer:
True.
Explanation:
A nanometer is a unit of mass, whereas a nanosecond is a unit of time. To convert 1.3 hours to minute, you would multiply by 1 h / 60 min. Kilometer is a unit of length, whereas kilogram is a unit of mass. True.
Answer:
The answer is "a, c and b"
Explanation:
- Its total block power is equal to the amount of potential energy and kinetic energy.
- Because the original block expansion in all situations will be the same, its potential power in all cases is the same.
- Because the block in the first case has no initial speed, the block has zero film energy.
- For both the second example, it also has the
velocity, but the kinetic energy is higher among the three because its potential and kinetic energy are higher. - While over the last case the kinetic speed is greater and lower than in the first case, the total energy is also higher than the first lower than that of the second.
- The greater the amplitude was its greater the total energy, therefore lower the second, during the first case the higher the amplitude.
The fiducial points of the Celsius<span> and the </span>Fahrenheit<span> temperature </span>scales<span> are the boiling and freezing </span>points<span> of pure water at 1 atm of pressure.
In short, Your Answer would be Option D
Hope this helps!</span>
Answer:
The height of Sears Tower is 1448.5 feet.
Explanation:
<h3>
We apply the free fall formula to the ball:
</h3><h3>

</h3><h3>y: The vertical distance the ball moves at time t </h3><h3>

i: Initial speed
</h3><h3>g=Gravity acceleration=

</h3>
Known information
We know that the vertical distance (y) that the ball moves in 9,5s is equal to height of Sears Tower (h).
Too we know that the ball is released from rest, then,
=0
Height of Sears Tower calculation:
We replace in the equation 1 the data following;






Answer: The height of Sears Tower is 1448.5 ft
Answer:
total momentum = 8.42 kgm/s
velocity of the first cart is 3.660 m/s
Explanation:
Given data
mass m1 = 2.3 kg
mass m2 = 1.5 kg
final velocity V2 = 4.9 m/s
final velocity V3 = - 1.9 m/s
to find out
total momentum and velocity of the first cart
solution
we know mass and final velocty
and initial velocity of second cart V1 = 0
so now we can calculate total momentum that is m1 v2 + m2 v2
total momentum = 2.3 ×4.9 + 1.5 ×(-1.9)
total momentum = 8.42 kgm/s
and
conservation of momentum is
m1 V + m2 v1 = m1 v2 + m2 v3
put all value and find V
2.3 V + 1.5 ( 0) = 2.3 ( 4.9 ) + 1.5 ( -1.9)
V = 8.42 / 2.3
V = 3.660 m/s
so velocity of the first cart is 3.660 m/s