Yes that is correct. We know this because 4.00 x 10 4 Pa is constant. If you have 2.00×10−3m3 then you do the following: (2.00×10^−3)(4.00×10^<span> 4) = </span>8.00×10^−3. That is how you get your answer
Answer:
Velocity is 1.73 m/s along 54.65° south of east.
Explanation:
Let unknown velocity be v, mass of billiard ball be m and east direction be positive x axis.
Here momentum is conserved.
Initial momentum = Final momentum
Initial momentum = m x 2i + m x (-1)i = m i
Final momentum = m x v + m x 1.41 j = mv + 1.41 m j
Comparing
mi = mv + 1.41 m j
v = i - 1.41 j
Magnitude of velocity
Direction,
Velocity is 1.73 m/s along 54.65° south of east.
Radio waves, Middle-C, and halitosis are not forms of light.
Answer:
A) ΔU = 3.9 × 10^(10) J
B) v = 8420.75 m/s
Explanation:
We are given;
Potential Difference; V = 1.3 × 10^(9) V
Charge; Q = 30 C
A) Formula for change in energy of transferred charge is given as;
ΔU = QV
Plugging in the relevant values gives;
ΔU = 30 × 1.3 × 10^(9)
ΔU = 3.9 × 10^(10) J
B) We are told that this energy gotten above is used to accelerate a 1100 kg car from rest.
This means that the initial potential energy will be equal to the final kinetic energy since all the potential energy will be converted to kinetic energy.
Thus;
P.E = K.E
ΔU = ½mv²
Where v is final velocity.
Plugging in the relevant values;
3.9 × 10^(10) = ½ × 1100 × v²
v² = [7.8 × 10^(8)]/11
v² = 70909090.9090909
v = √70909090.9090909
v = 8420.75 m/s