Answer:
RbF
mgo
nh4cl
because electrons are lost by and element forming a cation and gained by the other element forming an anion and held together by electrostatic forces
Answer is B.
As the diaphragm contracts and flattens, it increases the volume of the thorax where the lungs are located. This results in a decrease in pressure (Boyle’s Law, if you know it) that creates a pressure gradient from outside to inside. This is what causes air to move into the lungs.
Answer:
Aquifer
Explanation:
Instead of snowcapped mountains that store water in advance of warmer temperatures, most of our drinking water comes from underground "mountains" of porous materials called aquifers which are replenished by rain. The Biscayne Aquifer is South Florida's lower east coast's primary source of fresh water.
Answer:
The answer is Frost Point.
Explanation:
The temperature to which the air must be cooled, with constant pressure, to reach saturation (in relation to liquid water), is called the dew point. The dew point gives a measure of the water vapor content in the air. The higher, the greater the concentration of water vapor in the air. However, when cooling produces saturation at a temperature of 0 ° C or less, the temperature is called a frost point. The water vapor is deposited as frost on a surface whose temperature is below the dew point.
The rate constant of first order reaction at 32. 3 °C is 0.343 /s must be less the 0. 543 at 25°C.
First-order reactions are very commonplace. we have already encountered examples of first-order reactions: the hydrolysis of aspirin and the reaction of t-butyl bromide with water to present t-butanol. every other reaction that famous obvious first-order kinetics is the hydrolysis of the anticancer drug cisplatin.
The value of ok suggests the equilibrium ratio of products to reactants. In an equilibrium combination both reactants and merchandise co-exist. big ok > 1 merchandise are k = 1 neither reactants nor products are desired.
Rate constant K₁ = 0. 543 /s
T₁ = 25°C
Activation energy Eₐ = 75. 9 k j/mol.
T₂ = 32. 3 °C.
K₂ =?
formula;
log K₂/K₁= Eₐ /2.303 R [1/T₁ - 1/T₂]
putting the value in the equation
K₂ = 0.343 /s
Hence, The rate constant of first order reaction at 32. 3 °C is 0.343 /s
The specific rate steady is the proportionality consistent touching on the fee of the reaction to the concentrations of reactants. The fee law and the specific charge consistent for any chemical reaction should be determined experimentally. The cost of the charge steady is temperature established.
Learn more about activation energy here:- brainly.com/question/26724488
#SPJ4