Answer:
Since the middle of the 19th century, minerals have been classified on the basis of their chemical composition. Under this scheme, they are divided into classes according to their dominant anion or anionic group (e.g., halides, oxides, and sulfides).
Explanation:
Apart from the free gases in Earth’s atmosphere, some 20 elements occur in nature in a pure (i.e., uncombined) or nearly pure form. Known as the native elements, they are partitioned into three families: metals, semimetals, and nonmetals. The most common native metals, which are characterized by simple crystal structures, make up three groups: the gold group, consisting of gold, silver, copper, and lead; the platinum group, composed of platinum, palladium, iridium, and osmium; and the iron group, containing iron and nickel-iron. Mercury, tantalum, tin, and zinc are other metals that have been found in the native state.
Answer:
0.100 M AlCl₃
Explanation:
The variation of boiling point by the addition of a nonvolatile solute is called ebullioscopy, and the temperature variation is calculated by:
ΔT = W.i
Where W = nsolute/msolvent, and i is the Van't Hoff factor. Because all the substances have the same molarity, n is equal for all of them.
i = final particles/initial particles
C₆H₁₂O₆ don't dissociate, so final particles = initial particles => i = 1;
AlCl₃ dissociates at Al⁺³ and 3Cl⁻, so has 4 final particles and 1 initial particle, i = 4/1 = 4;
NaCl dissociates at Na⁺ and Cl⁻ so has 2 final particles and 1 initial particle, i = 2/1 = 2;
MgCl₂ dissociates at Mg⁺² and 2Cl⁻, so has 3 final particles and 1 initial particle, i = 3/1 = 3.
So, the solution with AlCl₃ will have the highest ΔT, and because of that the highest boiling point.
Answer:
Concentration, because the amounts of reactants and products remain constant after equilibrium is reached.
Explanation:
The rate of reaction refers to the amount of reactants converted or products formed per unit time.
As the reaction progresses, reactions are converted into products. This continues until equilibrium is attained in a closed system.
When equilibrium is attained, the rate of forward reaction is equal to the rate of reverse reaction, hence the concentration of reactants and products in the system remain fairly constant over time.
When deducing the rate of reaction, concentration of the specie of interest is plotted on the y-axis against time on the x-axis.
No because carbon is a gas and sand is a solid
Where are the questions ?