Answer:
18857.553
Explanation:
for an approximate result, multiply the value by 239
D. Electron cloud allowed the particles to pass through
Answer:

Explanation:
Manganese is the element of group 7 and forth period. The atomic number of Manganese is 25 and the symbol of the element is Mn.
The electronic configuration of the element, manganese is -

To form
, it will lose 3 electrons from the valence electrons and thus the configuration of the ion is:-

It is 116.0206134 I guess
<h3>
Answer:</h3>
4.227 × 10^-19 Joules
<h3>
Explanation:</h3>
Energy of a photon of light is calculated by the formula;
E = hf, where h is the plank's constant, 6.626 × 10^-34 J-s and f is the frequency.
But, f = c/λ
Where, c is the speed of light (2.998 × 10⁸ m/s), and λ is the wavelength.
Given the wavelength is 470 nm or 4.7 × 10^-7 m
Therefore;
E = hc/λ
= (6.626 × 10^-34 J-s × 2.998 × 10^8 m/s) ÷ 4.7 × 10^-7 m
= 4.227 × 10^-19 Joules
Therefore, the energy of a photon with 470 nm is 4.227 × 10^-19 Joules