2.083 Liters of 6.0 M solution sulfuric acid is required. This solved using molecular calculations and Titration.
Solution: 
Moles of hydrogen gas = 
Then 12.5 moles of hydrogen will be obtained from Moles of Sulfuric acid = 12.5 mol
Molarity of the sulfuric acid solution = 6.0 M = 6 mol/ l
6M = 
where V is the volume needed

V = 2.083 l
<h3>
What is Titration?</h3>
- Titration, commonly referred to as titrimetry, is a typical quantitative chemical analysis method used in laboratories to ascertain the unidentified quantity of an analyte .
- Titration is frequently referred to as volumetric analysis because it relies heavily on volume measurements. The titrant or titrator is a reagent that is prepared as a standard solution.
- To determine concentration, a solution of the analyte or titrand reacts with a known concentration and volume of the titrant. The titration volume is the amount of titrant that has responded.
- Titrations come in a variety of forms with various protocols and objectives. Redox and acid-base titrations are the two most typical types of qualitative titrations.
To learn more about titration with the given link
brainly.com/question/2728613
#SPJ4
P = 2.30 atm
Volume in liter = 2.70 mL / 1000 => 0.0027 L
Temperature in K = 30.0 + 273 => 303 K
R = 0.082 atm
molar mass O2 = 31.9988 g/mol
number of moles O2 :
P * V = n * R* T
2.30 * 0.0027 = n * 0.082 * 303
0.00621 = n * 24.846
n = 0.00621 / 24.846
n = 0.0002499 moles of O2
Mass of O2:
n = m / mm
0.0002499 = m / 31.9988
m = 0.0002499 * 31.9988
m = 0.008 g
Answer:
Theoretical yield of C6H10 = 3.2 g.
Explanation:
Defining Theoretical yield as the quantity of product obtained from the complete conversion of the limiting reactant in a chemical reaction. It can be expressed as grams or moles.
Equation of the reaction
C6H11OH --> C6H10 + H2O
Moles of C6H11OH:
Molar mass of C6H110H = (12*6) + (1*12) + 16
= 100 g/mol
Mass of C6H10 = 3.8 g
number of moles = mass/molar mass
=3.8/100
= 0.038 mol.
Using stoichoimetry, 1 moles of C6H110H was dehydrated to form 1 mole of C6H10 and 1 mole of water.
Therefore, 0.038 moles of C6H10 was produced.
Mass of C6H10 = molar mass * number of moles
Molar mass of C6H10 = (12*6) + (1*10)
= 82 g/mol.
Mass = 82 * 0.038
= 3.116 g of C6H10.
Theoretical yield of C6H10 = 3.2 g
Answer:
when the rates of the forward and reverse reactions are equal
Explanation:
In a chemical system, the reaction reaches a dynamic equilibrium when the rate of formation of product equals the rate of formation of reactants. This implies that both the forward and revered(backwards) reaction are occurring at the same rate.
Yes bro I gotchu now gimme da thanks and da answer is urs