Answer:
a) T
b) T
c) F
d) F
e) T
f) T
g) T
h) F
I) F
j) F
k) F
l) F
Explanation:
The w/v concentration is obtained from, mass/volume. Hence;
%w/v= 50/1000= 5%
In the %w/w we have;
25g/100 g = 25% w/w
In combustion reaction, energy is given out hence it is exothermic.
Neutralization reaction yields a salt and water
% by mass of carbon is obtained from;
8× 12/114 × 100 = 84.1%
All the ionic substances mentioned have very low solubility in water.
One mole of a substance contains the Avogadro's number of each atom in the compound.
There are two iron atoms so one mole contains 2× 55.85 g of iron.
Some sulphates such as BaSO4 are insoluble in water.
Halides are soluble in water hence NaI is soluble in water.
The equation does not balance with the given coefficients because the number of atoms of each element on both sides differ.
The equation represents a decomposition of calcium carbonate as written.
There is no reaction.
<em>Molecular equation
:</em>
K₂CO₃(aq) + 2NH₄Cl(aq) ⟶ 2KCl(aq) + (NH₄)₂CO₃(aq)
<em>Ionic equation
:</em>
2K⁺(aq) + CO₃²⁻(aq) + 2NH₄⁺(aq) +2Cl⁻(aq) ⟶ 2K⁺(aq) + 2Cl⁻(aq) + 2NH₄⁺(aq) + CO₃²⁻(aq)
<em>Net ionic equation
:</em>
Cancel all ions that appear on both sides of the reaction arrow (underlined).
<u>2K⁺(aq)</u> + <u>CO₃²⁻(aq)</u> + <u>2NH₄⁺(aq</u>) +<u>2Cl⁻(aq)</u> ⟶ <u>2K⁺(aq)</u> + <u>2Cl⁻(aq</u>) + <u>2NH₄⁺(aq)</u> + <u>CO₃²⁻(aq)</u>
<em>All ions cancel</em>. There is no net ionic equation.
Answer: Temperature of the water is 40
Reaction time: 26.3
Explanation: literally just press the tongs in the workslide!
<u>Answer:</u>
3.67 moles
<u>Step-by-step explanation:</u>
We need to find out the number of
moles present in 350 grams of a compound.
Molar mass of
= 24.305
Molar mass of
= 35.453
So, one mole of
= 24.305 + (35.453 * 2) = 95.211g
1 Mole in 1 molecule of
= 
Therefore, number of moles in 350 grams of compound = 0.0105 * 350
= 3.67 moles
Answer:
Substances can change phase—often because of a temperature change. At low temperatures, most substances are solid; as the temperature increases, they become liquid; at higher temperatures still, they become gaseous.
The process of a solid becoming a liquid is called melting. (an older term that you may see sometimes is fusion). The opposite process, a liquid becoming a solid, is called solidification. For any pure substance, the temperature at which melting occurs—known as the melting point—is a characteristic of that substance. It requires energy for a solid to melt into a liquid. Every pure substance has a certain amount of energy it needs to change from a solid to a liquid. This amount is called the enthalpy of fusion (or heat of fusion) of the substance, represented as ΔHfus. Some ΔHfus values are listed in Table 10.2 “Enthalpies of Fusion for Various Substances”; it is assumed that these values are for the melting point of the substance. Note that the unit of ΔHfus is kilojoules per mole, so we need to know the quantity of material to know how much energy is involved. The ΔHfus is always tabulated as a positive number. However, it can be used for both the melting and the solidification processes as long as you keep in mind that melting is always endothermic (so ΔH will be positive), while solidification is always exothermic (so ΔH will be negative).
Table 10.2 Enthalpies of Fusion for Various Substances
Explanation: