The solution that conducts electricity and has a pH value of 7 would most likely be a neutral solution. Water is among the best examples of a neutral solution. When the pH of a solution is considered to be lesser than 7, it is an acid, while if the pH is greater than 7, it is considered to be a basic solution.
10 cubic inches
We will use Boyle's law that states that for a fixed amount of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional.
P1 V1 = P2 V2
Where
P1 is initial pressure = 5 psi
V1 is initial volume = 20 cubic inch
P2 is final pressure = 10 psi
V2 is final volume = unknown
V2 = P1,V1 / P2
V2 = 20 × 5 / 10
V2 = 100/10
V2 = 10 cubic inches
Answer:
8.37 grams
Explanation:
The balanced chemical equation is:
C₆H₁₂O₆ ⇒ 2 C₂H₅OH (l) + 2 CO₂ (g)
Now we are asked to calculate the mass of glucose required to produce 2.25 L CO₂ at 1atm and 295 K.
From the ideal gas law we can determine the number of moles that the 2.25 L represent.
From there we will use the stoichiometry of the reaction to determine the moles of glucose which knowing the molar mass can be converted to mass.
PV = nRT ⇒ n = PV/RT
n= 1 atm x 2.25 L / ( 0.08205 Latm/kmol x 295 K ) =0.093 mol CO₂
Moles glucose required:
0.093 mol CO₂ x ( 1 mol C₆H₁₂O₆ / 2 mol CO₂ ) = 0.046 mol C₆H₁₂O₆
The molar mass of glucose is 180.16 g/mol, then the mass required is
0.046 mol x 180.16 g/mol = 8.37 g
Answer:
Al₂(SO₄)₃ and Na
Explanation:
Al has a charge of +3, Na has a charge of +1 and SO₄ has a charge of -2. Since cations and anions will bond we know that Al will bond with SO₄ leaving Na by itself (since this is a single replacement reaction). When Al bonds with SO₄ it makes aluminum sulfate which is Al₂(SO₄)₃ and Na will be left by itself.