Hi!
Answer:
The change in temperature.
Explanation:
Snow forms at 0 °C, when water vapor converts directly into solid ice crystals. Sleet forms when raindrops fall through a layer of air colder than 0 °C. This means that from the time it was snowing to the time it started sleeting the air has gotten warmer but one layer of air stayed cold, hence the formation of sleet. Freezing rain is rain that freezes when it hits a cold surface. This means that from the time it was sleeting to the time there was freezing rain the air had completely warmed and is now above 0 °C but the ground and all other surfaces are still cold.
I hope this helps, as this happens all the time where I live! :)
In order to determine the concentration of ammonium ions in
the solution prepared by mixing solutions of ammonium sulfate, (NH4)2SO4, and ammonium
nitrate, first calculate the amount of ammonium ions for each solution.<span>
<span>For ammonium sulfate sol'n: 0.360 L x 0.250 mol(NH4)2SO4/ L x 2 mol NH4+ /1 mol(NH4)2SO4 =
0.18 mol NH4+
<span>For ammonium nitrate sol'n: 0.675 x 1.2 mol NH4NO3/L x 1 mol NH4+ /1 molNH4NO3
= 0.81 mol NH4+
Thus, the amount of NH4+ ions is (0.18 + 0.81) mol or 0.99
mol NH4+. To get the concentration, multiply this to the volume of solution
which is assumed to be additive, such that:</span></span></span>
M NH4+ in sol’n = 0.99 mol NH4+/1.035 L = 0.9565 mol NH4+/ L
sol’n
Assuming that the nests are bird's nests and the data is a data gathered by the biologists about those nests.
A hurricane would cause some damage to the nests that is existent and cause a remarkably low count even during breeding season. It would also influence later birds because of population weakening due to the hurricane.
A mole of any gas occupied 22.4 L at STP. So, the number of moles of nitrogen gas at STP in 846 L would be 846/22.4 = 37.8 moles of nitrogen gas.
Alternatively, you can go the long route and use the ideal gas law to solve for the number of moles of nitrogen given STP conditions (273 K and 1.00 atm). From PV = nRT, we can get n = PV/RT. Plugging in our values, and using 0.08206 L•atm/K•mol as our gas constant, R, we get n = (1.00)(846)/(0.08206)(273) = 37.8 moles, which confirms our answer.