Niterogen if I’m wrong please correct me
Answer:
hydrogen bonds, the positive and negative charges of the hydrogen and oxygen atoms that make up water molecules makes them attracted to one another.
There can be three mole ratios that can be written involving three substances.It depends on the constant of your reactant to your product. It also depends on the asked mole ratio. But the maximum would be 3 mole ratios because you have 3 substances in your reaction.
Answer:
V₂ ≈416.7 mL
Explanation:
This question asks us to find the volume, given another volume and 2 temperatures in Kelvin. Based on this information, we must be using Charles's Law and the formula. Remember, his law states the volume of a gas is proportional to the temperature.
where V₁ and V₂ are the first and second volumes, and T₁ and T₂ are the first and second temperature.
The balloon has a volume of 600 milliliters and a temperature of 360 K, but the temperature then drops to 250 K. So,
- V₁= 600 mL
- T₁= 360 K
- T₂= 250 K
Substitute the values into the formula.
- 600 mL /360 K = V₂ / 250 K
Since we are solving for the second volume when the temperature is 250 K, we have to isolate the variable V₂. It is being divided by 250 K. The inverse o division is multiplication, so we multiply both sides by 250 K.
- 250 K * 600 mL /360 K = V₂ / 250 K * 250 K
- 250 K * 600 mL/360 K = V₂
The units of Kelvin cancel, so we are left with the units of mL.
- 250 * 600 mL/360=V₂
- 416.666666667 mL= V₂
Let's round to the nearest tenth. The 6 in the hundredth place tells us to round to 6 to a 7.
The volume of the balloon at 250 K is approximately 416.7 milliliters.
Answer:
Here's what I find.
Explanation:
An indicator is usually is a weak acid in which the acid and base forms have different colours. Most indicators change colour over a narrow pH range.
(a) Litmus
Litmus is red in acid (< pH 5) and blue in base (> pH 8).
This is a rather wide pH range, so litmus is not much good in titrations.
However, the range is which it changes colour includes pH 7 (neutral), so it is good for distinguishing between acids and bases.
(b) Phenolphthalein
Phenolphthalein is colourless in acid (< pH 8.3) and red in base (> pH 10).
This is a narrow pH range, so phenolphthalein is good for titrating acids with strong bases..
However, it can't distinguish between acids and weakly basic solutions.
It would be colourless in a strongly acid solution with pH =1 and in a basic solution with pH = 8.
(c) Other indicators
Other acid-base indicators have the general limitations as phenolphthalein. Most of them have a small pH range, so they are useful in acid-base titrations.
The only one that could serve as a general acid-base indicator is bromothymol blue, which has a pH range of 6.0 to 7.6.