Answer:
0.0827M of H₂SO₃
Explanation:
LiOH reacts with H₂SO₃ to produce water and Li₂SO₃, thus:
2LiOH + H₂SO₃ → 2H₂O + Li₂SO₃
<em>Where 2 moles of lithium hydroxide react with 1 mole of sulfurous acid.</em>
As the chemist requires 22.14mL = 0.02214L of a 0.210M solution to neutralize the acid, moles of LiOH are:
0.02214L × (0.210mol / L) =<em>0.004649 moles of LiOH</em>.
As 2 moles of LiOH react with 1 mole of H₂SO₃, moles of H₂SO₃ are:
0.004649 moles of LiOH ₓ (1 mole H₂SO₃ / 2 mol LiOH) =
<em>0.002325 moles of H₂SO₃</em>
These moles are present in 28.10mL = 0.02810L. Thus, molar concentration of the acid is:
0.002325 moles H₂SO₃ / 0.02810L = <em>0.0827M of H₂SO₃</em>
D. Same energy level but different sublevel.
<h3>Explanation</h3>
There are four quantum numbers [1]:
- <em>n</em><em>, </em>the principal quantum number,
- <em>l</em>, the orbital angular momentum quantum number,
- <em>
</em>, the magnetic quantum number, and - <em>
</em>, the electron spin quantum number.
As their names might suggest:
- <em>n </em>determines the main energy level of an electron.
- <em>l</em> determines the type of sublevel of an electron.
- Each sublevel might contain more than one orbital. <em>
</em> gives the orbital of an electron. - Each orbital contains up to two electrons. <em>
</em> tells two electrons in the same orbital apart.<em> </em>
The two electrons in question come from the same atom. The question suggests that they have the same <em>n</em>, <em>
</em>, and <em>
</em>. As a result, both electrons are in main energy level <em>n</em> = 3. They share the same spin.
However, the two electrons differ in their value of <em>l</em>.
- <em>l </em>= 2 for the first electron. It belongs to a <em>d</em> sublevel.
- <em>l </em>= 1 for the second electron. It belongs to a <em>p</em> sublevel.
<h3>Reference</h3>
[1] Kamenko, Anastasiya, et. al, "Quantum Numbers", Physical & Theoretical Chemistry, Chemistry Libretexts, 24 Mar 2017.
Answer:
The external atmospheric pressure decreases and so does the boiling point of the liquid.
Explanation:
We know that pressure decreases with height. Thus atmospheric pressure decreases at higher elevation.
The implication of this is that, if I take a liquid from sea level to a higher elevation, the external atmospheric pressure on the liquid will decrease and so does its boiling point.
Hence, the liquid boils at a lower temperature when placed at a higher elevation. For this reason, the boiling point of a liquid is lower on the mountain.
The bond that exist between two oxygen atoms is called a double covalent bond. This bond involves the sharing of four electrons to obtain a more stable structure. This type of bond is much stronger than the single covalent bond.
Answer:
V2 = 90.7 mL
Explanation:
pressure and volume are inversely proportional, if the pressure is increased, the volume will decrease. In an isothermal process:
p1V1 = p2V2
V2 = p1V1/p2 = (277 torr×187 mL)/571 torr
V2 = 90.7 mL