It would have to increase pressure... but I don’t see that option here..?
With that informatio you can:
1) Write the chemical equation
2) Balance the chemical equation
3) State the molar ratios
4) Predict if precipitation occurs.
I will do all four, for you:
1) Chemical equation:
mercury(I) nitrate potassium bromide mercury(I) bromide potassium nitrate
<span>Hg2(NO3)2 + KBr → Hg2Br2 + KNO<span>3
2) Balanced chemical equation
</span></span>
<span>Hg2(NO3)2 + 2KBr → Hg2Br2 + 2KNO<span>3
3) Molar ratios or proportions:
1 mol </span></span><span>Hg2(NO3)2 : 2 mol KBr : 1 mol Hg2Br2 : 2 mol KNO<span>3
4) Prediction of precipitation.
You can use the solubility rules or a table of solubilities. I found in a table of solutiblities that mercury(I) bromide is insoluble and potassium bromide is soluble, Then you can predict that the precipitation of mercury(I) bromide will occur.
</span></span>
1.) scale of the chart
2.) Notes of the chart
3.) chart symbols
4.) chart corrections
5.) GPS positions
6.) radar fixes
7.) Visual fixtures and position circle and position line
Answer:
OBr₂
Explanation:
<em>The ionic character depends on the difference of electronegativity between the elements. The higher ΔEN, the greater the ionic character.</em>
SBr₂
ΔEN = |EN(S)-EN(Br)| = |2.5-2.8| = 0.3
OBr₂
ΔEN = |EN(O)-EN(Br)| = |3.5-2.8| = 0.7
SeCl₂
ΔEN = |EN(Se)-EN(Cl)| = |2.4-3.0| = 0.6
TeI₂
ΔEN = |EN(Te)-EN(I)| = |2.1-2.5| = 0.4
SCl₂
ΔEN = |EN(S)-EN(Cl)| = |2.5-3.0| = 0.5
OBr₂ is the molecule with the most ionic character.
Answer:
Hello
Explanation:
tbh YES and it sucks bc ppl treat u like trash, but don't let that get into ur head just be you, you'll find someone who treats u as if u were literally a goddess, keep ur head up and dont worry.
your welcome! ^^