<em>M CaCl₂: 40+(35,5×2) = 111 g/mol</em>
6,02·10²³ molecules ---------- 111g
X molecules --------------------- 75,9g
X = (75,9×<span>6,02·10²³)/111
X = <u>4,116</u></span><span><u>·10²³</u> molecules of CaCl</span>₂
:)
The reason why Br has a greater magnitude of electron affinity than that of I is that there is a greater attraction between an added electron and the nucleus in Br than in I.
In the periodic table, there are trends that increase down the group and across the period. Electron affinity is a trend that increases across the period but decreases down the group.
Recall that the ability of an atom to accept an electron depends on the size of the atom. The smaller the atom, the greater the attraction between an added electron and the nucleus.
Since Br is smaller than I, there is a greater attraction between an added electron and the nucleus in Br than in I which explains why Br has a greater magnitude of electron affinity than I.
Learn more: brainly.com/question/17696329
Valence electrons are found AT THE OUTERMOST SHELL OF AN ATOM.
Valence electron refers to those electrons that are located furthest away from the nucleus of an atom, that is, they are found at the outermost shell. Valence electrons determine the chemical properties of an element and they are the only ones that get involved in chemical reactions with other elements.
D. Electron cloud allowed the particles to pass through