The force applied to lift the crate is 171 N
Explanation:
The lever works on the principle of equilibrium of moments, so we can write:

where
is the force in input
is the arm of the input force
is the output force
is the arm of the output force
For the lever in this problem, we have:


(force applied)
Solving the equation for
, we find the force applied to lift the crate:

Learn more about levers:
brainly.com/question/5352966
#LearnwithBrainly
Answer:
The density of the sample is 36 g/cm³
Explanation:
m= 972g
l=3cm
V = l³ = 3³ = 27 cm³
density = mass/volume
= 972/27
= 36 g/cm³
Choices 'a', 'c', and 'd' are true.
In choice 'b', I'm not sure what it means when it says that masses
are 'balanced'. To me, masses are only balanced when they're on
a see-saw, or on opposite ends of a rope that goes over a pulley.
Maybe the statement means that the mass of the nucleus and the
mass of the electron cloud are equal. This is way false. It takes
more than 1,800 electrons to make the mass of ONE proton or
neutron, and the most complex atom in nature only has 92 electrons
in it. So there's no way that the masses of the nucleus and the electrons
in one atom could ever be anywhere near equal.
Technically this is a Biology question;
The 'amount' we can see depends on how much light can get through our pupil to hit our retina.
When there is a lot of light the pupil is small; it doesn't need to be big to let a lot of light in.
When we move to a dark space there is much less light, so the pupil 'dilates' to let enough light so we can see properly.
The period in which one cant see is simply when the pupil hasn't had time to change shape yet so doesn't let in enough light.<span />
Before coming into conclusion first we have to understand both scalar and vector .
A scalar quantity is a physical quantity which has only magnitude for it's complete specification.
A vector quantity is that physical quantity which not only requires magnitude but also possesses direction for it's complete specification.
So the most important factor that differentiate vector from scalar is the direction.
As per the question the student is doing an experiment where he is recording the data obtained during the process.
In order to arrange them in data table, he should ask about the direction of the quantity under consideration.
Hence the correct option is the third option(C)i.e does the measurement include direction?