Answer:
Step-by-step explanation:
Given

and
lies between

and for this
,
and
is Positive as they lie in 2 nd Quadrant






3s+28=85, take away 28 from both sides of the equals to give you 3s=57, divide by 3 on both side to give you s=19.
Answer:
the answer is 6x.
Step-by-step explanation:
Ohhhh nasty ! What a delightful little problem !
The first card can be any one of the 52 in the deck. For each one ...
The second card can be any one of the 39 in the other 3 suits. For each one ...
The third card can be any one of the 26 in the other 2 suits. For each one ...
The fourth card can be any one of the 13 in the last suit.
Total possible ways to draw them = (52 x 39 x 26 x 13) = 685,464 ways.
But wait ! That's not the answer yet.
Once you have the 4 cards in your hand, you can arrange them
in (4 x 3 x 2 x 1) = 24 different arrangements. That tells you that
the same hand could have been drawn in 24 different ways. So
the number of different 4-card hands is only ...
(685,464) / (24) = <em>28,561 hands</em>.
I love it !