Answer:
<h2>6000 kg.m/s</h2>
Explanation:
The momentum of an object can be found by using the formula
momentum = mass × velocity
From the question we have
momentum = 2000 × 3
We have the final answer as
<h3>6000 kg.m/s</h3>
Hope this helps you
Answer:
ELASTIC collision
kinetic energy is conservate
Explanation:
As the ball bounces to the same height, it can be stated that the impact with the floor is ELASTIC.
As the floor does not move the conservation of the moment
po = pf
-mv1 = m v2
- v1 = v2
So the speed with which it descends is equal to the speed with which it rises
Therefore the kinetic energy of the ball before and after the collision is the same
a. 0.5 T
- The amplitude A of a simple harmonic motion is the maximum displacement of the system with respect to the equilibrium position
- The period T is the time the system takes to complete one oscillation
During a full time period T, the mass on the spring oscillates back and forth, returning to its original position. This means that the total distance covered by the mass during a period T is 4 times the amplitude (4A), because the amplitude is just half the distance between the maximum and the minimum position, and during a time period the mass goes from the maximum to the minimum, and then back to the maximum.
So, the time t that the mass takes to move through a distance of 2 A can be found by using the proportion

and solving for t we find

b. 1.25T
Now we want to know the time t that the mass takes to move through a total distance of 5 A. SInce we know that
- the mass takes a time of 1 T to cover a distance of 4A
we can set the following proportion:

And by solving for t, we find

Answer:
17.2 seconds
Explanation:
Given:
v₀ = 0 m/s
a₁ = 10.0 m/s²
t₁ = 3.0 s
a₂ = 16 m/s²
t₂ = 5.0 s
a₃ = -12 m/s²
v₃ = 0 m/s
Find: t
First, find v₁:
v₁ = a₁t₁ + v₀
v₁ = (10.0 m/s²) (3.0 s) + (0 m/s)
v₁ = 30 m/s
Next, find v₂:
v₂ = a₂t₂ + v₁
v₂ = (16 m/s²) (5.0 s) + (30 m/s)
v₂ = 110 m/s
Finally, find t₃:
v₃ = a₃t₃ + v₂
(0 m/s) = (-12 m/s²) t₃ + (110 m/s)
t₃ = 9.2 s
The total time is:
t = t₁ + t₂ + t₃
t = 3.0 s + 5.0 s + 9.2 s
t = 17.2 s
Round as needed.