Answer:
D
Explanation:
descriptive, because scientists are writing down the observations but not making comparisons.
Answer:
The light bends away from the normal
Explanation:
We can solve the problem by using Snell's law:

where:
is the index of refraction of the first medium
is the index of refraction of the second medium
is the angle of incidence (angle between the incoming ray and the normal to the interface)
is the angle of refraction (angle between the outcoming ray and the normal to the interface)
We can rearrange the equation as

In this problem, light travels from an optically denser medium to an optically rarer medium, so

Therefore, the term
is greater than 1, so

which means that the angle of refraction is greater than the angle of incidence, and so the light will bend away from the normal.
Answer:
The direction of the contact forces acting on a body is not necessarily perpendicular to the contact surface. The resolution of contact forces in two components i.e. perpendicular to contact surface and along surface. Perpendicular component is normal force and parallel component is friction.
Explanation:
When placing the piece of aluminium in water, the level of water will rise by an amount equal to the volume of the piece of aluminum.
Therefore, we need to find the volume of that piece.
Density can be calculated using the following rule:
Density = mass / volume
Therefore:
volume = mass / density
we are given that:
the density = 2.7 g / cm^3
the mass = 16 grams
Substitute in the equation to get the volume of the piece of aluminum as follows:
volume = 16 / 2.7 = 5.9259 cm^3
Since the water level will rise to an amount equal to the volume of aluminum, therefore, the water level will rise by 5.9259 cm^3
It is a comet that was a comet