Answer:
Velocity of Object with 2 kg= 3.390 m/s
Velocity of Object with 3 kg= 3.404 m/s
Explanation:
From the picture, it can be seen that object B is initially at rest while object A is travelling at a speed of 5m/s. After the collision, Object A moves at an angle of 65 degrees while object B moves at an angle of 37 degrees.
We also know that momentum of a closed system is conserved.
Initial momentum along the x-axis = 2*5.5 = 11
Initial momentum along y-axis = 0
Final momentum along x-axis= a*Cos(65)*2 +b*Cos(37) *3= 11 (a is the velocity of object A of 2 kg after collision where as b is the velocity of object B of 3 kg after collision. velocity is multiplied by cosines of the angle from x axis to give the horizontal component of the velocities).
Final momentum along y-axis = a*Sin(65)*2 - b*Sin(37)*3 =0 (We can see that vertical components of velocity are opposite in direction to each other)
Solve both the equations simultaneously for a and b.
F = m * a
a = F / m = 2.050.000 N / 40.000 kg ( 1 N = 1 kgm/s² )
a = 51.25 m/s²
Answer:
b= 2.14 m
Explanation:
Given that
Weight of the board ,wt = 40 N
Wight of the first children , wt₁=500 N
Weight of the second children ,wt₂ = 350 N
The distance of the 500 N child from center ,a= 1.5 m
lets take distance of the 350 N child from center = b m
Now by taking the moment about the center of the board
We know that moment = Force x Perpendicular distance from the force
wt₁ x a = wt₂ x b
500 x 1.5 = 350 x b
b= 2.14 m
Therefore the distance of the 350 N weight child from the center is 2.14 m.
Answer:
I know one answer is an observer on earth sees a lunar eclipse
A) His wagon will accelerate more.
B) His wagon will accelerate less. Both parts are answered by F=ma. Mass is inversely proportional to acceleration, and force is directly proportional to acceleration.