You haven't said what 'high' resistance or 'low' current means, so there's way not enough info to nail the statement as true or false. The most precise answer is "certainly could be but not necessarily". Anyway, the current in the circuit depends on BOTH the resistance AND the voltage. So without knowing the voltage too, you can't say anything about the current.
Answer:
f = 1 m
Explanation:
The magnification of the lens is given by the formula:

where,
M = Magnification = 4
q = image distance = 5 m
p = object distance = ?
Therefore,

Now using thin lens formula:

<u>f = 1 m</u>
The object takes 0.5 seconds to complete one rotation, so its rotational speed is 1/0.5 rot/s = 2 rot/s.
Convert this to linear speed; for each rotation, the object travels a distance equal to the circumference of its path, or 2<em>π</em> (1.2 m) = 2.4<em>π</em> m ≈ 7.5 m, so that
2 rot/s = (2 rot/s) • (2.4<em>π</em> m/rot) = 4.8<em>π</em> m/s ≈ 15 m/s
thus giving it a centripetal acceleration of
<em>a</em> = (4.8<em>π</em> m/s)² / (1.2 m) ≈ 190 m/s².
Then the tension in the rope is
<em>T</em> = (50 kg) <em>a</em> ≈ 9500 N.
Answer:
The answer is C 1.8V and 0.38A
Answer: all of the above and yes
hope thsi helps