Answer:
Velocity, u = 14.7 m/s
Explanation:
It is given that, a driver can probably survive an acceleration of 50 g that lasts for less than 30 ms, but in a crash with a 50 g acceleration lasting longer than 30 ms, a driver is unlikely to survive.
Let v is the highest speed that the car could have had such that the driver survived. Using a = -50 g and t = 30 ms
Using first equation of kinematics as :

In case of crash the final speed of the driver is, v = 0
u = 14.7 m/s
So, the highest speed that the car could have had such that the driver survived is 14.7 m/s. Hence, this is the required solution.
Answer:
0.04 mol
Explanation:
Given data:
Mass of barium = 5.96 g
Moles of barium = ?
Solution:
Formula:
Number of moles = mass/molar mass
Molar mass of barium = 5.96 g/ 137.33 g/mol
Number of moles = 0.04 mol
Thus the number of moles of barium in 5.96 g are 0.04 moles. The chemist weight out the 0.04 moles .
Answer:

Explanation:

Hope you have understood this.....
ask me if you have any confusion.....
if you liked it pls mark it as the brainliest