Answer:
Technician A
Explanation:
Often referred to as the profile or series, the aspect ratio of a tire is determined by dividing a tire’s section height by its section width when the tire is: inflated to maximum air pressure, mounted on the approved measuring rim, and under no load. This rules out Technician B.
A tire with a lower aspect ratio responds to lateral force more effectively than a tire with a higher aspect ratio. The aspect ratio affects steering stability. Generally, the shorter the sidewall, or the lower the aspect ratio, the less time it takes to transmit the steering input from the wheel to the tread. The result is quicker steering response. Aspect ratio also affects the tread contact patch. As a rule, a low-profile tire produces a wider tread contact patch. This wider tread contact patch creates a stiffer footprint that reduces distortion and provides improved cornering traction. Aspect ratio also impacts ride. A low-profile tire usually has a stiffer ride than the standard aspect ratio of 75 or more.
Answer:
a) 13.59 m/s²
b) 67.95 m/s
c) 169.875 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
m = Mass
Force

Acceleration of the jet is 13.59 m/s²

Velocity attained at 5 seconds is 67.95 m/s

Distance traveled in the 5 seconds is 169.875 m
Answer:
Transverse
Explanation:
Transverse wave, motion in which all points on a wave oscillate along paths at right angles to the direction of the wave's advance. Surface ripples on water, seismic S (secondary) waves, and electromagnetic (e.g., radio and light) waves are examples of transverse waves
Answer:
F = 5.256 x 
Explanation:
From the work energy theorem we know that:
The net work done on a particle equals the change in the particles kinetic energy:
W = F.d, ΔK =
where:
W = work done by the force
F = Force
d = Distance travelled
m = Mass of the car
vf, vi = final and initial velocity of the car
kf, ki = final and initial kinetic energy of the car
Given the parameters;
m = 830kg
vi = 1.9 m/s
vf = 0 km/h
d = 0.285 m
Inserting the information we have:
F.d = 
F = 
F = 
F = 5.256 x 
Answer:
520 N
Explanation:
Work is the dot product of the force vector and displacement vector.
W = F · x
This means it is the product of the magnitudes of the vectors and the cosine of the angle between them.
W = F x cos θ
The displacement of the soil is 15 m up. The force is parallel to the ramp. So the angle between the vectors is 90° − 35° = 55°.
Plugging in the values and solving for F:
4500 J = F (15 m) (cos 55°)
F = 523 N
Rounded to two significant figures, the force is 520 N.