Answer:
Electric potential energy at the negative terminal: 
Explanation:
When a particle with charge
travels across a potential difference
, then its change in electric potential energy is

In this problem, we know that:
The particle is an electron, so its charge is

We also know that the positive terminal is at potential

While the negative terminal is at potential

Therefore, the potential difference (final minus initial) is

So, the change in potential energy of the electron is

This means that the electron when it is at the negative terminal has
of energy more than when it is at the positive terminal.
Since the potential at the positive terminal is 0, this means that the electric potential energy of the electron at the negative end is

Answer:
Power is the rate at which work is done or energy is transferred in a unit of time. Power is increased if work is done faster or energy is transferred in less time.
Answer:
Explanation:
Given that
F=2x³
Work is given as
The range of x is from x=0 to x=D
W=-∫f(x)dx
Then,
W=-∫2x³dx from x=0 to x=D
W=- 2x⁴/4 from x=0 to x=D
W=-2(D⁴/4-0/4)
W=-D⁴/2
W=1/2D⁴
The correct answer is F
The acceleration of the car would be 0.33 first and then it would be 0.17.
<u>Explanation:</u>
An applied force is a force that is applied to an object by an individual or another item. On the off chance that an individual is pushing a work area over the room, at that point there is an applied power following up on the article. The applied power is the power applied on the work area by the individual.
The net force applied to the object rises to the mass of the article increased by the measure of its acceleration. The net power following up on the soccer ball is equivalent to the mass of the soccer ball duplicated by its adjustment in speed each second (its acceleration).
Answer:
P max = 1000 pa
P min = 200 pa
Explanation:
P = F/A
pressure will be maximum when surface gets minimum. so to find the maximum amount of pressure we need to calculate the minimum surface. it is 2cm×5cm = 10cm² = 0.001m² . then we have:
P = 1 / 0.001 = 1000 pa
to find minimum pressure the surface that must be chosen is 10cm×5cm = 50cm² = 0.005m² .
P = 1 / 0.005 = 200 pa